Err Documentation
Release 6.1.1

Guillaume Binet, Tali Davidovich Petrover and Nick Groenen

Jul 07, 2019

Contents

Screenshots 3
Simple to build upon 5
Batteries included 7
3.1 Multiple serverbackends oL e e 7
3.2 Corefeatires v v v i e 8
3.3 Built-in administration and Securityo e e e e e e e e e e e 8
3.4 Extensive plugin framework L e e e 8
Sharing 9
Community 11
User guide 13
6.1 Setupo e e e e e 13
6.2 AdmIniStration e e e e e e e e e e e e e e e e e 22
6.3 Plugindevelopment e e 24
6.4 Flowdevelopment i i e e e e e e e e 51
6.5 [Advanced] Backend development L e 56
6.6 [Advanced] Storage Plugin development e 57
6.7 Loggingto Sentry e e 58
Getting involved 61
7.1 Contributing e e e e e 61
7.2 Issues and feature reqUestS oL L e e e e e e e e e e e e e e 62
7.3 Gettinghelp 62
API documentation 63
8.1 errbotpackage e 63
Release history 133
9.1 vO6.1.1(2019-00-22) o e e 133
9.2 v6.1.0 (2019-06-16) e 133
9.3 v6.0.0 (2019-03-23) e 133
9.4 v6.0.0-alpha (2018-06-10) e e 134
9.5 v5.2.0Q2018-04-04) e 135
9.6 V513 (2017-10-15) . . . o o o e e 135

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30

V512 (2017-08-26) '« o v v v e e e
VSL1 (2017-08-12) « v v e e e e e
V510 2017-07-24) « o v e e e
V5.0.1 (2017-05-08) '+ o o o v e e e
V5.0.0 (2017-04-23) '+ o v o e
VA3.7 (2017-0208) '« o v o e e e e
VA.3.6 (2017-01-28) « v v e e
VA3.5 (2016-12-21) o v e e
VA34 (2016-10-05) « o o ot e
V433 (2016-09-00) .+ o o ot
VA3.2(2016-09-04) '« o o o v
V431 (2016-09-03) « v e
VA.3.0 (2016-08-10) .+« v v e e
VA2.2 (2016-0624) '« o v ot
VA2.1 (2016-06-10) '« o o o o e e
V42,0 (2016-06-10) '+ o o o o
VA1.3(2016-05-10) '« o o o v e
VA 12 (2016-05-10) « v v e e
VA L1 (2016-05-00) .« . v vt e
VA L0 (2016-05-00) '+ o o v v e e e
VA.0.3 (2016-03-17) '« o v o e e e e
VA.0.2 (2016-03-15) '« o v o e e e
VA.0.1 (2016-03-14) « v v e e
VA.0.0 (2016-03-13) « v v e e

10 License

Python Module Index

Index

Err Documentation, Release 6.1.1

Errbot is a chatbot, a daemon that connects to your favorite chat service and brings your tools into the conversation.

The goal of the project is to make it easy for you to write your own plugins so you can make it do whatever you want:
a deployment, retrieving some information online, trigger a tool via an API, troll a co-worker,. ..

Errbot is being used in a lot of different contexts: chatops (tools for devops), online gaming chatrooms like EVE, video
streaming chatrooms like livecoding.tv, home security, etc.

Contents 1

http://livecoding.tv

Err Documentation, Release 6.1.1

2 Contents

CHAPTER 1

Screenshots

Err Documentation, Release 6.1.1

4 Chapter 1. Screenshots

CHAPTER 2

Simple to build upon

Extending Errbot and adding your own commands can be done by creating a plugin, which is simply a class derived
from BotPlugin. The docstrings will be automatically reused by the //elp command:

from errbot import BotPlugin, botcmd

class HelloWorld (BotPlugin) :
"""Example 'Hello, world!' plugin for Errbot."""

@botcmd

def hello(self, msg, args):
"""Say hello to the world."""
return "Hello, world!"

Once you said “!hello” in your chatroom, the bot will answer “Hello, world!”.

Err Documentation, Release 6.1.1

6 Chapter 2. Simple to build upon

CHAPTER 3

Batteries included

We aim to give you all the tools you need to build a customized bot safely, without having to worry about basic

functionality. As such, Errbot comes with a wealth of features out of the box.

3.1

Multiple server backends

Errbot has support for a number of different networks and is architectured in a way that makes it easy to write new

backends in order to support more. Currently, the following networks are supported:

XMPP (Any standards-compliant XMPP/Jabber server should work - Google Talk/Hangouts included)

Hipchat

IRC

Slack

Telegram

Bot Framework (maintained separately)
CampFire (maintained separately)
‘Cisco Webex Teams‘_ (maintained separately)
Discord (maintained separately)

Gitter (maintained separately)

Matrix (maintained separately)
Mattermost (maintained separately)
Skype (maintained separately)

Tox (maintained separately)

VK (maintained separately)

https://www.hipchat.com/
http://slack.com/
https://telegram.org/
https://botframework.com/
https://github.com/vasilcovsky/errbot-backend-botframework
https://campfirenow.com/
https://github.com/errbotio/err-backend-campfire
https://github.com/marksull/err-backend-cisco-webex-teams
https://www.discordapp.com/
https://github.com/gbin/err-backend-discord
http://gitter.im/
https://github.com/errbotio/err-backend-gitter
https://matrix.org/
https://github.com/SShrike/err-backend-matrix
https://about.mattermost.com/
https://github.com/Vaelor/errbot-mattermost-backend
http://www.skype.com/en/
https://github.com/errbotio/errbot-backend-skype
https://tox.im/
https://github.com/errbotio/err-backend-tox
https://vk.com/
https://github.com/Ax3Effect/errbot-vk

Err Documentation, Release 6.1.1

3.2

Zulip (maintained separately)

Core features

Multi User Chatroom (MUC) support

A dynamic plugin architecture: Bot admins can install/uninstall/update/enable/disable plugins dynamically just
by chatting with the bot

Advanced security/access control features (see below)

A 'help command that dynamically generates documentation for commands using the docstrings in the plugin
source code

A per-user command history system where users can recall previous commands

The ability to proxy and route one-to-one messages to MUC so it can enable simpler XMPP notifiers to be MUC
compatible (for example the Jira XMPP notifier)

Built-in administration and security

Can be setup so a restricted list of people have administrative rights

Fine-grained access controls may be defined which allow all or just specific commands to be limited to specific
users and/or rooms

Plugins may be hosted publicly or privately and dynamically installed (by admins) via their Git url
Plugins can be configured directly from chat (no need to change setup files for every plugin)
Configs can be exported and imported again with two commands (!export and !import respectively)

Technical logs can be logged to file, inspected from the chat or optionally logged to Sentry

Extensive plugin framework

Hooks and callbacks for various types of events, such as callback connect () for when the bot has con-
nected or callback_message () for when a message is received.

Local text and graphical consoles for easy testing and development

Plugins get out of the box support for subcommands

We provide an automatic persistence store per plugin

There’s really simple webhooks integration

As well as a polling framework for plugins

An easy configuration framework

A test backend for unittests for plugins which can make assertions about issued commands and their responses

And a templating framework to display fancy HTML messages. Automatic conversion from HTML to plaintext
when the backend doesn’t support HTML means you don’t have to make separate text and HTML versions of
your command output yourself

Chapter 3. Batteries included

https://zulipchat.com/
https://github.com/zulip/errbot-backend-zulip

CHAPTER 4

Sharing

One of the main goals of Errbot is to make it easy to share your plugin with others as well.

Errbot features a built-in repositories command (!repos) which can be used to install, uninstall and update plugins
made available by the community. Making your plugin available through this command only requires you to publish
it as a publicly available Git repository.

You may also discover plugins from the community on our plugin list that we update from plugins found on github.

https://github.com/errbotio/errbot/wiki

Err Documentation, Release 6.1.1

10 Chapter 4. Sharing

CHAPTER B

Community

Errbot has a Google plus community, which is the best place to discuss anything related to Errbot as well as promote
your own creations ! This is also the place where you will find announcements of new versions and other news related
to the project.

You can also interact directly with the community online from the “Open Chat” button at the bottom of this page.
Don’t be shy and feel free to ask any question there, we are more than happy to help you.

If you think you hit a bug or the documentation is not clear enough, you can open an issue or even better, open a pull
request.

11

https://plus.google.com/communities/117050256560830486288
https://github.com/errbotio/errbot/issues

Err Documentation, Release 6.1.1

12 Chapter 5. Community

CHAPTER O

User guide

6.1 Setup

6.1.1 Prerequisites

Errbot runs under Python 3.3+ on Linux, Windows and Mac.

6.1.2 Installation

Option 1: Use the package manager of your distribution (if available)

On some distributions, Errbot is also available as a package via your usual package manager. In these cases, it is
generally recommended to use your distribution’s package instead of installing from PyPi but note that the version
packaged with your distribution may be a few versions behind.

Example of packaged versions of Errbot:

Gentoo: https://gpo.zugaina.org/net-im/errbot Arch: https://aur.archlinux.org/packages/python-err/ Docker: https://
hub.docker.com/r/rroemhild/errbot/ Juju: https://jujucharms.com/u/onlineservices-charmers/errbot

Option 2: Installing Errbot in a virtualenv (preferred)

Installing into a virtualenv is strongly recommended. If you have virtualenv installed, you can do for example:

virtualenv --python “which python3' ~/.errbot-ve
~/.errbot-ve/bin/pip install errbot

If you have virtualenvwrapper installed it is even simpler:

mkvirtualenv -p “which python3® errbot-ve
pip install errbot

13

https://gpo.zugaina.org/net-im/errbot
https://aur.archlinux.org/packages/python-err/
https://hub.docker.com/r/rroemhild/errbot/
https://hub.docker.com/r/rroemhild/errbot/
https://jujucharms.com/u/onlineservices-charmers/errbot
https://virtualenv.pypa.io/en/latest/

Err Documentation, Release 6.1.1

Option 3: Installing Errbot at the system level (not recommended)

Errbot may be installed directly from PyPi using pip by issuing:

pip3 install errbot

Note: Some of errbot’s dependencies need to build C extensions which means you need to have development headers
for some libraries installed. On Debian/Ubuntu these may be installed with apt-get install python3-dev libssl-dev
libffi-dev Package names may differ on other OS’s.

First run

You can quickly configure Errbot by first creating a working directory and calling errbot —init:

mkdir ~/errbot-root
cd ~/errbot-root
errbot —--init

This will create a minimally working errbot in text (development) mode. You can try it right away:

errbot

[...]

>>>

>>> is a prompt, you can talk to errbot directly. You can try:

'tryme
'help
labout

6.1.3 Configuration

Once you have installed errbot and did errbot —init, you will have to tweak the generated config.py to connect to your
desired chat network.

You can use config-template.py as a base for your config.py.

We’ll go through the options that you absolutely must check now so that you can quickly get started and make further
tweaks to the configuration later on.

Open config.py in your favorite editor. The first setting to check or change if BOT_DATA_DIR if correct. This is the
directory where the bot will store configuration data.

The first setting to check or change BOT_LOG_FILE to be sure it point to a writeable directory on your system.

The final configuration we absolutely must do is setting up a correct BACKEND which is set to Text by errbot —init but
you can change to the name of the chat system you want to connect to (see the template above for valid values).

You absolutely need a BOT_IDENTITY entry to set the credentials Errbot will use to connect to the chat system.
You can find here more details about configuring Errbot for some specific chat systems:

XMPP backend configuration

This backend lets you connect to any Jabber/XMPP server. To select this backend, set BACKEND = ‘XMPP’.

14 Chapter 6. User guide

https://pip.pypa.io/en/stable/

Err Documentation, Release 6.1.1

Extra Dependencies

You need to install this dependency before using Errbot with XMPP:

pip install sleekxmpp pyasnl pyasnl-modules

Account setup

You must manually register an XMPP account for the bot on the server you wish to use. Errbot does not support
XMPP registration itself.

Configure the account by setting up BOT_IDENTITY as follows:

BOT_IDENTITY = {

'username': 'err@server.tld', # The JID of the user you have created for the bot
'password': 'changeme', # The corresponding password for this user
'server': ('host.domain.tld',5222), # server override

By default errbot will query SRV records for the correct XMPP server and port, which should work with a properly
configured server.

If your chosen XMPP server does not have correct SRV records setup, you can also set the server key to override this.

A random resource ID is assigned when errbot starts up. You may fix the resource by appending it to the user name:

BOT_IDENTITY = {
'username': 'err@server.tld/resource',

Bot admins

You can set BOT_ADMINS to configure which XMPP users are bot administrators. For example: BOT_ADMINS =
(‘gbin@someplace.com’, ‘zoni@somewhere.else.com’)

MUC rooms

If you want the bot to join a certain chatroom when it starts up then set CHATROOM_PRESENCE with a list of MUCs
to join. For example: CHATROOM_PRESENCE = (‘err@conference.server.tld’,)

Note: don’t omit the comma under any circumstance!

You can configure the username errbot should use in chatrooms by setting CHATROOM_FN.

IRC backend configuration

This backend lets you connect to any IRC server. To select this backend, set BACKEND = ‘IRC’.

Extra Dependencies

You need to install this dependency before using Errbot with IRC:

6.1. Setup 15

Err Documentation, Release 6.1.1

pip install irc

Account setup

Configure the account by setting up BOT_IDENTITY as follows:

BOT_IDENTITY = {

'nickname' : 'err-chatbot',

'username' : 'err—-chatbot', # optional, defaults to nickname if omitted
'password' : None, # optional

'server' : 'irc.freenode.net',

'port': 6667, # optional

'ssl': False, # optional

'ipv6': False, # optional

'nickserv_password': None, # optional

Optional: Specify an IP address or hostname (vhost), and a
port, to use when making the connection. Leave port at 0
1f you have no source port preference.

example: 'bind_address': ('my-errbot.io', 0)

'bind address': ('localhost', 0),

You will at a minimum need to set the correct values for nickname and server above. The rest of the options can be
left commented, but you may wish to set some of them.

Bot admins

You can set BOT_ADMINS to configure which IRC users are bot administrators. For example: BOT_ADMINS =
(‘gbin!gbin@*’, “*/*@trusted.host.com’)

Note: The default syntax for users on IRC is {nick}/{user}@{host} but this can be changed by adjusting the
IRC_ACL_PATTERN setting.

Channels

If you want the bot to join a certain channel when it starts up then set CHATROOM_PRESENCE with a list of channels
to join. For example: CHATROOM_PRESENCE = (‘#errbotio’,)

Note: You may leave the value for CHATROOM_FN at its default as it is ignored by this backend.

Flood protection

Many IRC servers have flood protection enabled, which means the bot will get kicked out of a channel when sending
too many messages in too short a time.

Errbot has a built-in message ratelimiter to avoid this situation. You can enable it by setting IRC_CHANNEL_RATE
and IRC_PRIVATE_RATE to ratelimit channel and private messages, respectively.

16 Chapter 6. User guide

Err Documentation, Release 6.1.1

The value for these options is a (floating-point) number of seconds to wait between each message it sends.

Rejoin on kick/disconnect

Errbot won’t rejoin a channel by default when getting kicked out of one. If you want the bot to rejoin channels on
kick, you can set IRC_RECONNECT_ON_KICK = 5 (to join again after waiting 5 seconds).

Similarly, to rejoin channels after being disconnected from the server you may set
IRC_RECONNECT_ON_DISCONNECT = 5.

HipChat backend configuration

This backend lets you connect to the HipChat messaging service. To select this backend, set BACKEND = ‘Hipchat’.

Extra Dependencies

You need to install this dependency before using Errbot with Hipchat:

pip install sleekxmpp pyasnl pyasnl-modules hypchat

Account setup

You will first need to create a regular user account for the bot to use. Once you have an account for errbot to use, login
at HipChat and go into the account settings for the user.

You will need to create an API token under API access. Make sure it has all available scopes otherwise some func-
tionality will be unavailable, which may prevent the bot from working correctly at all.

With the API token created, continue on to XMPP/Jabber info. You will be needing the Jabber ID which is listed
here.

You can now configure the account by setting up BOT_IDENTITY as follows:

BOT_IDENTITY = {
'username' : '12345_123456@chat.hipchat.com',
'password' : 'changeme',
Group admins can create/view tokens on the settings page after logging
in on HipChat's website
'token' : 'ed4b74d62833267d98aa99£312££04",
If you're using HipChat server (self-hosted HipChat) then you should set
the endpoint below. If you don't use HipChat server but use the hosted version
of HipChat then you may leave this commented out.
'endpoint' : 'https://api.hipchat.com',
If your self-hosted Hipchat server is using SSL, and your certificate
is self-signed, set verify to False or hypchat will fail
'verify': False,

Bot admins

You can set BOT_ADMINS to configure which Hipchat users are bot administrators. Make sure to include the @ sign.
For example: BOT_ADMINS = (‘@gbin’, ‘@zoni’)

6.1. Setup 17

https://hipchat.com/

Err Documentation, Release 6.1.1

Rooms

You can let the bot join rooms (that it has access to) by setting up CHATROOM_PRESENCE. For example: CHAT-
ROOM_PRESENCE = (‘General’, ‘Another room’)

You must also set the correct value for CHATROOM _FN. This must be set to the value of Room nickname which can
be found in the HipChat account settings under XMPP/Jabber info.

@mentions

To make the bot respond when it is mentioned (such as with “@errbot status”) we recommend also setting
BOT_ALT_PREFIXES = (‘@errbot’,) (assuming errbot is the username of the account you’re using for the bot).

Slack backend configuration

This backend lets you connect to the Slack messaging service. To select this backend, set BACKEND = ‘Slack’.

Extra Dependencies

You need to install this dependency before using Errbot with Slack:

pip install slackclient

Account setup

You will need to have an account at Slack for the bot to use, either a bot account (recommended) or a regular user
account.

We will assume you’re using a bot account for errbot, which may be created here. Make note of the API Token you
receive as you will need it next.

With the bot account created on Slack, you may configure the account in errbot by setting up BOT_IDENTITY as
follows:

BOT_IDENTITY = {
'token': 'xoxb-4426949411-aEM7...",
}

Proxy setup

In case you need to use a Proxy to connect to Slack, you can set the proxies with the token config.

BOT_IDENTITY ={ ‘token’: ‘xoxb-4426949411-aEM7...’, ‘proxies’: {‘http’: ‘some-http-proxy’,
‘https’: ‘some-https-proxy’}

18 Chapter 6. User guide

https://slack.com/
https://my.slack.com/services/new/bot

Err Documentation, Release 6.1.1

Bot admins

You can set BOT_ADMINS to configure which Slack users are bot administrators. Make sure to include the @ sign:

BOT_ADMINS = ('@gbin', '@zoni'")

Bot mentions using @

To enable using the bot’s name in BOT_ALT PREFIXES for @mentions in Slack, simply add the bot’s name as
follows:

BOT_ALT_PREFIXES = ('@botname',)

Channels/groups

If you’re using a bot account you should set CHATROOM_PRESENCE = (). Bot accounts on Slack are not allowed
to join/leave channels on their own (they must be invited by a user instead) so having any rooms setup in CHAT-
ROOM_PRESENCE will result in an error.

If you are using a regular user account for the bot then you can set CHATROOM_PRESENCE to a list of channels and
groups to join.

Note: You may leave the value for CHATROOM_FN at its default as it is ignored by this backend.

Telegram backend configuration

This backend lets you connect to Telegram Messenger. To select this backend, set BACKEND = ‘Telegram’.

Extra Dependencies

You need to install this dependency before using Errbot with Telegram:

pip install python-telegram-bot

Account setup

You will first need to create a bot account on Telegram for errbot to use. You can do this by talking to @BotFather
(see also: BotFather). Make sure you take note of the token you receive, you’ll need it later.

Once you have created a bot account on Telegram you may configure the account in errbot by setting up
BOT _IDENTITY as follows:

BOT_IDENTITY = {
"token': '103419016:AAbcdl234...",
}

6.1. Setup 19

https://telegram.org/
https://telegram.me/botfather
https://core.telegram.org/bots#botfather

Err Documentation, Release 6.1.1

Bot admins

You can setup BOT_ADMINS to designate which users are bot admins, but on Telegram this is a little more difficult to
do. In order to configure a user here you will have to obtain their user ID.

The easiest way to do this is to start the bot with no BOT_ADMINS defined. Then, have the user for which you want
to obtain the user ID message the bot and send it the /whoami command.

This will print some info about the user, including the following: string representation is ‘123669037°. 1t is this
number that needs to be filled in for BOT_ADMINS. For example: BOT_ADMINS = (123669037,)

Rooms

Telegram does not expose any room management to bots. As a group admin, you will have to add a bot to a groupchat
at which point it will automatically join.

By default the bot will not receive any messages which makes interacting with it in a groupchat difficult.

To give the bot access to all messages in a groupchat, you can use the /setprivacy command when talking to @BotFa-
ther.

Note: Because Telegram does not support room management, you must set CHATROOM_PRESENCE = () otherwise
you will see errors.

Slash commands

Telegram treats messages which start with a / differently, which is designed specifically for interacting with bots.

We therefor suggest setting BOT_PREFIX = */’ to take advantage of this.

6.1.4 Starting the daemon

The first time you start Errbot, it is recommended to run it in foreground mode. This can be done with:

’errbot

If you installed errbot into a virtualenv (as recommended), call it by prefixing the virtualenv bin/ directory:

’/path/to/my/virtualenv/bin/errbot

Please pass -h or —help to errbot to get a list of supported parameters. Depending on your situation, you may need to
pass —config (or -c) pointing to the directory holding your config.py when starting Errbot.

If all that worked out, you can now use the -d (or —daemon) parameter to run it in a detached mode:

errbot —--daemon

If you are going to run your bot all the time then using some process control system such as supervisor is highly
recommended. Installing and configuring such a system is outside the scope of this document, however, we do provide
some sample daemon configurations below.

Note: There are two ways to gracefully shut down a running bot.

20 Chapter 6. User guide

https://core.telegram.org/bots#botfather
https://core.telegram.org/bots#botfather
https://core.telegram.org/bots#commands
http://supervisord.org/

Err Documentation, Release 6.1.1

You can use the ! shutdown command to do so via chat or you can send a SIGINT signal to the errbot process to do
so from the commandline

If you’re running errbot in the foreground then pressing Ctrl+C is equivalent to sending SIGINT.

Daemon Configurations

These are a few example configurations using common init daemons:

supervisord (/etc/supervisor/conf.d/errbot.conf)

[program:errbot]
command = /path/to/errbot/virtualenv/bin/errbot --config /path/to/errbot/config.py
user = errbot

stdout_logfile = /var/log/supervisor/errbot.log
stderr_logfile = NONE

redirect_stderr = true

directory = /path/to/errbot/

startsecs = 3

stopsignal = INT

environment = LC_ALL="en_US.UTF-8"

systemd (/etc/systemd/system/errbot.service)

[Unit]
Description=Start Errbot chatbot
After=network.service

[Service]

Environment="LC_ALL=en_US.UTF-8"
Environment="PATH=/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/path/to/errbot/
—virtualenv/bin"

ExecStart=/path/to/errbot/virtualenv/bin/errbot --config /path/to/errbot/config.py
WorkingDirectory=/path/to/errbot/

User=errbot

Restart=always

KillSignal=SIGINT

[Install]
WantedBy=multi-user.target

Note: Running errbot within a daemon process can have security implications if the daemon is started with an
account containing elevated privileges. We encourage errbot not be run under a root or administrator account but
under a non-privileged account. The command below creates a non-privileged errbot account on Linux:

$ useradd --no-create-home --no-user-group -g nogroup -s /bin/false errbot

6.1.5 Upgrading

Errbot comes bundled with a plugin which automatically performs a periodic update check. Whenever there is a new
release on PyPI, this plugin will notify the users set in BOT_ADMINS about the new version.

6.1. Setup 21

Err Documentation, Release 6.1.1

Assuming you originally installed errbot using pip (see installation), you can upgrade errbot in much the same way. If
you used a virtualenv:

’/path/to/my/virtualenv/bin/pip install --upgrade errbot

Or if you used pip without virtualenv:

’pip install —--upgrade errbot

It’s recommended that you review the changelog before performing an upgrade in case backwards-incompatible
changes have been introduced in the new version. The changelog for the release you will be installing can always
be found on PyPI.

6.1.6 Provisioning (advanced)

See the provisioning documentation

6.2 Administration

This document describes how to configure, administer and interact with errbot.

6.2.1 Configuration

There is a split between two types of configuration within errbot. On the one hand there is “setup” information, such as
the (chat network) backend to use, storage selection and other settings related to how errbot should run. These settings
are all configured through the config.py configuration file as explained in configuration.

The other type of configuration is the “runtime” configuration such as the plugin settings. Plugins can be dynamically
configured through chatting with the bot by using the !plugin config <plugin name> command.

There are a few other commands which adjust the runtime configuration, such as the !plugin blacklist
<plugin> command to unload and blacklist a specific plugin.

You can view a list of all these commands and their help documentation by using the built-in help function.

The built-in help function

To get a list of all available commands, you can issue:

'help

If you just wish to know more about a specific command you can issue:

’!help <command>

6.2.2 Installing plugins

Errbot plugins are typically published to and installed from GitHub. We periodically crawl GitHub for errbot plugin
repositories and publish the results for people to browse.

You can have your bot display the same list of repos by issuing:

22 Chapter 6. User guide

https://pypi.python.org/pypi/errbot
provisioning.html
http://github.com/
https://github.com/errbotio/errbot/wiki

Err Documentation, Release 6.1.1

’!repos

Searching can be done by specifying one or more keywords, for example:

’!repos search hello

To install a plugin from the list, issue:

’!repos install <name of plugin>

You aren’t limited to installing public plugins though. You can install plugins from any git repository you have access
to, whether public or private, hosted on GitHub, BitBucket or elsewhere. The /repos install command can take any git
URI as argument.

If you’re unhappy with a plugin and no longer want it, you can always uninstall a plugin again with:

’!repos uninstall <plugin>

You will probably also want to update your plugins periodically. This can be done with:

’!repos update all

Dependencies

Please pay attention when you install a plugin as it may have additional dependencies. If the plugin contains a
requirements.txt file then Errbot will automatically check the requirements listed within and warn you when you are
missing any.

Additionally, if you set AUTOINSTALL_DEPS to True in your config.py, Errbot will use pip to install any miss-
ing dependencies automatically. If you have installed Errbot in a virtualenv, this will run the equivalent of pip
install -r requirements.txt. If no virtualenv is detected, the equivalent of pip install --user
-r requirements.txt is used to ensure the package(s) is/are only installed for the user running Err.

Extra plugin directory

Plugins installed via the ! repos command are managed by errbot itself and stored inside the BOT_DATA_DIR you
set in config.py. If you want to manage your plugins manually for any reason then errbot allows you to load additional
plugins from a directory you specify. You can do so by specifying the setting BOT_EXTRA_PLUGIN_DIR in your
config.py file. See the config-—template.py file for more details.

6.2.3 Disabling plugins

You have a number of options available to you if you need to disable a plugin for any reason. Plugins can be temporarily
disabled by using the ! plugin deactivate <plugin name> command, which deactivates the plugin until the
bot is restarted (or activated again via !plugin activate <plugin name>.

If you want to prevent a plugin from being loaded at all during bot startup, the !plugin blacklist <plugin
name> command may be used.

It’s also possible to strip errbot down even further by disabling some of its core plugins which are otherwise activated
by default. You may for example want to this if you’re building a very specialized bot for a specific purpose.

Disabling core plugins can be done by setting the CORE_PLUGINS setting in config.py. For example, setting
CORE_PLUGINS = () would disable all of the core plugins which even removes the plugin and repository man-
agement commands described above.

6.2. Administration 23

Err Documentation, Release 6.1.1

6.2.4 Restricting access

Errbot features a number of options to limit and restrict access to commands of your bot. All of these are configured
through the config.py file as explained in configuration.

The first of these is BOT_ADMINS, which sets up the administrators for your bot. Some commands are hardcoded to
be admin-only so the people listed here will be given access to those commands (the users listed here will also receive
warning messages generated by the warn_admins () plugin function).

More advanced access controls can be set up using the ACCESS_CONTROLS and ACCESS_CONTROLS_DEFAULT
options which allow you to set up sophisticated rules. The example config. py file contains more information about
the format of these options.

If you don’t like encoding access controls into the config file, a member of the errbot community has also created a
dynamic ACL module which can be administered through chat commands instead.

Note: Different backends have different formats to identify users. Refer to the backend-specific notes at the end of
the configuration chapter to see which format you should use.

Command filters

If our built-in access controls don’t fit your needs, you can always create your own easily using command filters.
Command filters are functions which are called automatically by errbot whenever a user executes a command. They
allow the command to be allowed, blocked or even modified based on logic you implement yourself. In fact, the
restrictions enforced by BOT_ADMINS and ACCESS_CONTROLS above are implemented using a command filter
themselves so they can serve as a good examp1e (be sure to view the module source).

You can add command filters to your bot by including them as part of any regular errbot plugin, it will find and register
them automatically when your plugin is loaded. Any method in your plugin which is decorated by cmdfilter ()
will then act as a command filter.

6.3 Plugin development

Plugins form the heart of Errbot. From the ground up, it is designed to be extended entirely through plugins. In this
guide we will explain the basics of writing simple plugins, which we then follow up on further with sets of recipes on
a range of topics describing how to handle more advanced use-cases.

6.3.1 Intro

Before we get started I would like to make sure you have all the necessary requirements installed and give you an idea
of which knowledge you should already possess in order to follow along without difficulty.

Requirements

This guide assumes that you’ve already installed and configured Errbot and have successfully managed to connect it
to a chatting service server. See Serup if you have not yet managed to install or start Errbot.

24 Chapter 6. User guide

https://github.com/shengis/err-profiles

Err Documentation, Release 6.1.1

Prior knowledge

You can most definitely work with Errbot if you only have basic Python knowledge, but you should know about data
structures such as dictionaries, tuples and lists, know what docstrings are and have a basic understanding of decorators.

6.3.2 Development environment

Before we dive in and start writing our very first plugin, I'd like to take a moment to show you some tools and features
which help facilitate the development process.

Loading plugins from a local directory

Normally, you manage and install plugins through the built-in /repos command. This installs plugins by cloning them
via git, and allows updating of them through the /repos update command.

During development however, it would be easier if you could load your plugin(s) directly, without having to commit
them to a Git repository and instructing Errbot to pull them down.

This can be achieved through the BOT_EXTRA_PLUGIN_DIR setting in the config.py configuration file. If you set a
path here pointing to a directory on your local machine, Errbot will (recursively) scan that directory for plugins and
attempt to load any it may find.

Local test mode
You can run Errbot in a local single-user mode that does not require any server connection by passing in the ——text
(or —T) option flag when starting the bot.

In this mode, a very minimal back-end is used which you can interact with directly on the command-line. It looks like
this:

$ errbot -T

[...]

INFO:Plugin activation done.
Talk to me >> _

If you have PySide installed, you can also run this same mode in a separate window using ——graphic (or —G) instead
of ——text. The advantage of this is that you do not have the bot’s responses and log information mixed up together
in the same window.

Plugin scaffolding

Plugins consist of two parts, a special .plug file and one or more Python (.py) files containing the actual code of your
plugin (both of these are explained in-depth in the next section). Errbot can automatically generate these files for you
so that you do not have to write boilerplate code by hand.

To create a new plugin, run errbot —new-plugin (optionally specifying a directory where to create the new plugin - it
will use the current directory by default). It will ask you a few questions such as the name for your plugin, a description
and which versions of errbot it will work with and generate a plugin skeleton from this with all the information filled
out automatically for you.

6.3. Plugin development 25

https://pypi.python.org/pypi/PySide

Err Documentation, Release 6.1.1

6.3.3 Hello, world!

On the homepage, we showed you the following “Hello world!” plugin as an example:

from errbot import BotPlugin, botcmd

class HelloWorld (BotPlugin) :
"""Example 'Hello, world!' plugin for Errbot"""

@botcmd

def hello(self, msg, args):
"""Say hello to the world"""
return "Hello, world!"

In this chapter, you will learn exactly how this plugin works.

I will assume you’ve configured the BOT_EXTRA_PLUGIN_DIR as described in the previous chapter. To get started,
create a new, empty directory named HelloWorld inside this directory.

Create a new file called helloworld.py inside the HelloWorld directory you just created. This file contains all the logic
for your plugin, so copy and paste the above example code into it.

Anatomy of a BotPlugin

Although this plugin is only 9 lines long, there is already a lot of interesting stuff going on here. Lets go through it
step by step.

from errbot import BotPlugin, botcmd

This should be pretty self-explanatory. Here we import the Bot P1ugin class and the botcmd () decorator. These
let us build a class that can be loaded as a plugin and allow us to mark methods of that class as bot commands.

class HelloWorld (BotPlugin) :
"""Example 'Hello, world!' plugin for Errbot"""

Here we define the class that makes up our plugin. The name of your class, HelloWorld in this case, is what will make
up the name of your plugin. This name will be used in commands such as /status, /plugin load and !plugin unload

The class’ docstring is used to automatically populate the built-in command documentation. It will be visible when
issuing the /help command.

Warning: A plugin should only ever contain a single class inheriting from BotPIlugin

@botcmd

def hello(self, msg, args):
"""Say hello to the world"""
return "Hello, world!"

This method, hello, is turned into a bot command which can be executed because it is decorated with the bot cmd ()
decorator. Just as with the class docstring above, the docstring here is used to populate the /help command.

The name of the method, %ello in this case, will be used as the name of the command. That means this method creates
the /hello command.

26 Chapter 6. User guide

Err Documentation, Release 6.1.1

Note: The method name must comply with the usual Python naming conventions for identifiers , that is, they may
not begin with a digit (like 911 but only with a letter or underscore, so _911 would work) and cannot be any of the
reserved keywords such as pass (instead use password) etc.

Note: Should multiple plugins define the same command, they will be dynamically renamed (by prefixing them with
the plugin name) so that they no longer clash with each other.

If we look at the function definition, we see it takes two parameters, msg and args. The first is a Message ob-
ject, which represents the full message object received by Errbot. The second is a string (or a list, if using the
split_args_with parameter of botcmd ()) with the arguments passed to the command.

For example, if a user were to say /hello Mister Errbot, args would be the string “Mister Errbot”.

Finally, you can see we return with the string Hello, world!. This defines the response that Errbot should give. In this
case, it makes all executions of the /hello command return the message Hello, world!.

Note: If you return None, Errbot will not respond with any kind of message when executing the command.

Plugin metadata

We have our plugin itself ready, but if you start the bot now, you’ll see it still won’t load your plugin. What gives?

As it turns out, you need to supply a file with some meta-data alongside your actual plugin file. This is a file that ends
with the extension .plug and it is used by Errbot to identify and load plugins.

Lets go ahead and create ours. Place the following in a file called helloworld.plug:

[Core]
Name = HelloWorld
Module = helloworld

[Python]
Version = 2+
[Documentation]

Description = Example "Hello, world!" plugin

Note: This INI-style file is parsed using the Python configparser class. Make sure to use a valid file structure.

Lets look at what this does. We see two sections, [Core] , and [Documentation]. The [Core] section is what tells
Errbot where it can actually find the code for this plugin.

The key Module should point to a module that Python can find and import. Typically, this is the name of the file you
placed your code in with the .py suffix removed.

The key Name should be identical to the name you gave to the class in your plugin file, which in our case was
HelloWorld. While these names can differ, doing so is not recommended.

Note: If you're wondering why you have to specify it when it should be the same as the class name anyway, this has
to do with technical limitations that we won’t go into here.

6.3. Plugin development 27

https://docs.python.org/release/2.7.8/reference/lexical_analysis.html#identifiers
https://docs.python.org/release/2.7.8/reference/lexical_analysis.html#keywords
https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/configparser.html#supported-ini-file-structure

Err Documentation, Release 6.1.1

The [Documentation] section will be explained in more detail further on in this guide, but you should make sure to at
least have the Description item here with a short description of your plugin.

Wrapping up

If you’ve followed along so far, you should now have a working Hello, world! plugin for Errbot. If you start your bot,
it should load your plugin automatically.

You can verify this by giving the /status command, which should respond with something like the following:

Yes I am alive...
With these plugins (A=Activated, D=Deactivated, B=Blacklisted, C=Needs to be

—configured) :

[A] ChatRoom

[A] HelloWorld

[A] VersionChecker
[A] Webserver

If you don’t see your plugin listed or it shows up as unloaded, make sure to start your bot with DEBUG-level logging
enabled and pay close attention to what it reports. You will most likely see an error being reported somewhere along
the way while Errbot starts up.

Next steps

You now know enough to create very simple plugins, but we have barely scratched the surface of what Errbot can do.
The rest of this guide will be a recipe-style set of topics that cover all the advanced features Errbot has to offer.

6.3.4 Advanced bot commands
Automatic argument splitting

With the split_args_with argument to botcmd (), you can specify a delimiter of the arguments and it will give you
an array of strings instead of a string:

@botemd (split_args_with=None)

def action(self, mess, args):
1f you send it !action one two three
args will be ['one', 'two', 'three']

Note: split_args_with behaves exactly like str.split (), therefore the value None can be used to split on any type
of whitespace, such as multiple spaces, tabs, etc. This is recommended over ‘ ‘ for general use cases but you’re free to
use whatever argument you see fit.

Subcommands

If you put an _ in the name of the function, Errbot will create what looks like a subcommand for you. This is useful to
group commands that belong to each other together.

28 Chapter 6. User guide

Err Documentation, Release 6.1.1

@botcmd

def basket_add(self, mess, args):
Will respond to !basket add
pass

@botcmd

def basket_remove (self, mess, args):
Will respond to !basket remove
pass

Note: It will still respond to !basket_add and !basket_remove as well.

Argparse argument splitting

With the arg_botcmd () decorator you can specify a command’s arguments in argparse format. The decorator can
be used multiple times, and each use adds a new argument to the command. The decorator can be passed any valid
add_arguments() parameters.

Qarg _botemd ('first_name', type=str)
@arg botemd('--last-name', dest='last_name', type=str)
@arg botemd ('-—-favorite', dest='favorite_number', type=int, default=42)
def hello(self, mess, first_name=None, last_name=None, favorite_number=None) :
1f you send it !hello Err —--last-name Bot
first_name will be 'Err'
last_name will be 'Bot'
favorite number will be 42

Note:
e An argument’s dest parameter is used as its kwargs key when your command is called.

* favorite_number would be None if we removed default=42 from the arg_botcmd () call.

Commands using regular expressions

In addition to the fixed commands created with the botcmd () decorator, Errbot supports an alternative type of bot
function which can be triggered based on a regular expression. These are created using the re_botcmd () decorator.
There are two forms these can be used, with and without the usual bot prefix.

In both cases, your method will receive the message object same as with a regular bot cmd () , but instead of an args
parameter, it takes a match parameter which will receive an re .MatchObject.

Note: By default, only the first occurrence of a match is returned, even if it can match multiple parts of the message. If
you specify matchall=True, you will instead get a list of re . Mat chOb ject items, containing all the non-overlapping
matches that were found in the message.

6.3. Plugin development 29

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument

Err Documentation, Release 6.1.1

With a bot prefix

You can define commands that trigger based on a regular expression, but still require a bot prefix at the beginning of
the line, in order to create more flexible bot commands. Here’s an example of a bot command that lets people ask for
cookies:

from errbot import BotPlugin, re_botcmd

class CookieBot (BotPlugin) :
""r"A cookiemonster bot"""

@re_botemd (pattern=r"" (([Cclan| [Mm]ay) I have a)?cookie please\?$")
def hand_out_cookies(self, msg, match):

mon

Gives cookies to people who ask me nicely.

This command works especially nice if you have the following in
your “config.py’:

BOT_ALT PREFIXES = ('Err',)
BOT_ALT PREFIX SEPARATORS = (':', ',', ';'")

People are then able to say one of the following:

Err, can I have a cookie please?

Err: May I have a cookie please?

Err; cookie please?

mmn

yield "Here's a cookie for you, {}".format (msg.frm)
yield "/me hands out a cookie."

Without a bot prefix

It’s also possible to trigger commands even when no bot prefix is specified, by passing prefixed=False to the
re_botcmd () decorator. This is especially useful if you want to trigger on specific keywords that could show
up anywhere in a conversation:

import re
from errbot import BotPlugin, re_botcmd

class CookieBot (BotPlugin) :
""rnA cookiemonster bot"""

@re_botecmd (pattern=r" (*|)cookies?(|$)", prefixed=False, flags=re.IGNORECASE)
def listen_for_talk of cookies(self, msg, match):

"""Talk of cookies gives Errbot a craving..."""

return "Somebody mentioned cookies? Om nom nom!"

6.3.5 Messaging

Returning multiple responses

Often, with commands that take a long time to run, you may want to be able to send some feedback to the user that
the command is progressing. Instead of using a single refurn statement you can use yield statements for every line of

30 Chapter 6. User guide

Err Documentation, Release 6.1.1

output you wish to send to the user.

In the following example, the output will be “Going to sleep”, followed by a 10 second wait period and “Waking up”
in the end.

from errbot import BotPlugin, botcmd
from time import sleep

class PluginExample (BotPlugin) :
@botcmd
def longcompute (self, mess, args):
yield "Going to sleep"
sleep(10)
yield "Waking up"

Sending a message to a specific user or room

Sometimes, you may wish to send a message to a specific user or a groupchat, for example from pollers or on webhook
events. You can do this with send ():

self.send(
self.build_identifier ("userlhost.tld/resource"),
"Boo! Bet you weren't expecting me, were you?",

send () requires a valid Tdentifier instance to send to. build identifier () can be used to build such
an identifier. The format(s) supported by build_identifier will differ depending on which backend you are using. For
example, on Slack it may support #channel and @user, for XMPP it includes user@host.tld/resource, etc.

Templating

It’s possible to send Markdown responses using Jinja2 templates.
To do this, first create a directory called femplates in the directory that also holds your plugin’s .plug file.

Inside this directory, you can place Markdown templates (with a .md extension) in place of the content you wish to
show. For example this hello.md:

Hello, {{name}}!

Note: See the Jinja2 Template Designer Documentation for more information on the available template syntax.

Next, tell Errbot which template to use by specifying the femplate parameter to bot cmd () (leaving off the .md suffix).

Finally, instead of returning a string, return a dictionary where the keys refer to the variables you’re substituting inside
the template ({{namej} in the above template example):

from errbot import BotPlugin, botcmd

class Hello (BotPlugin) :
@botcmd (template="hello")
def hello(self, msg, args):
"""Say hello to someone
return {'name': args}

mown

6.3. Plugin development 31

http://daringfireball.net/projects/markdown/
http://jinja.pocoo.org/
http://jinja.pocoo.org/docs/templates/

Err Documentation, Release 6.1.1

It’s also possible to use templates when using self.send(), but in this case you will have to do the template rendering
step yourself, like so:

from errbot import BotPlugin, botcmd
from errbot.templating import tenv

class Hello (BotPlugin) :
@botcmd (template="hello")
def hello(self, msg, args):
"""Say hello to someone"""
response = tenv () .get_template('hello.md') .render (name=args)
self.send(msg.frm, response)

Cards

Errbot cards are a canned format for notifications. It is possible to use this format to map to some native format in
backends like Slack (Attachment) or Hipchat (Cards).

Similar to a self.send() you can use send_card () to send a card.

The following code demonstrate the various available fields.

from errbot import BotPlugin, botcmd

class Travel (BotPlugin) :
@botcmd
def hello_card(self, msg, args):
"""Say a card in the chatroom."""
self.send_card(title='Title + Body',
body="'text body to put in the card',
thumbnail="https://raw.githubusercontent.com/errbotio/errbot/
—master/docs/_static/errbot.png',
image="https://www.google.com/images/branding/googlelogo/2x/
—googlelogo_color_272x92dp.png',
link="http://www.google.com',
fields=(('First Key', 'Valuel'), ('Second Key', 'Value2')),
color="red',
in_reply_to=msqg)

Trigger a callback with every message received

It’s possible to add a callback that will be called on every message sent either directly to the bot, or to a chatroom that
the bot is in:

from errbot import BotPlugin

class PluginExample (BotPlugin) :
def callback_message(self, mess):
if mess.body.find('cookie') != -1:
self.send(
mess. frm,
"What what somebody said cookie!?",

32 Chapter 6. User guide

Err Documentation, Release 6.1.1

6.3.6 Presence

Presence describes the concept of a person’s availability state, such as online or away, possibly with an optional
message.

Callbacks for presence changes

Plugins may override callback_presence () in order to receive notifications of presence changes. You will
receive a Presence object for every presence change received by Errbot.

Here’s an example which simply logs each presence change to the log when it includes a status message:

from errbot import BotPlugin

class PluginExample (BotPlugin) :
def callback_presence(self, presence):
if presence.get_message() is not None:
self.log.info (presence)

Change the presence or status of the bot

You can also, depending on the backend you use, change the current status of the bot. This allows you to make a
moody bot that leaves the room when it is in a bad mood ;)

from errbot import BotPlugin, botcmd, ONLINE, AWAY

class PluginExample (BotPlugin) :

@botcmd
def grumpy(self, mess, args):

self.change_presence (AWAY, 'I am tired of you alll!'")
@botcmd

def happy(self, mess, args):
self.change_presence (ONLINE, 'I am back and so happy to see you!'")

6.3.7 Mentions

Depending on the backend used, users can mention and notify other users by using a special syntax like @ gbin. With
this feature, a plugin can listen to the mentioned users in the chat.

How to use it

Here is an example to listen to every mention and report them back on the chat.

from errbot import BotPlugin
class PluginExample (BotPlugin) :
def callback_mention(self, message, mentioned_people) :

for identifier in mentioned_people:
self.send(message.frm, 'User has been mentioned' % identifier)

6.3. Plugin development 33

Err Documentation, Release 6.1.1

Identifying if the bot itself has been mentioned

Simply test the presence of the bot identifier within the mentioned_people:

from errbot import BotPlugin
class PluginExample (BotPlugin) :

def callback_mention(self, message, mentioned_people) :
if self.bot_identifier in mentioned_people:

self.send(message.frm, 'Errbot has been mentioned !'")

6.3.8 Persistence

Persistence describes the ability for the plugins to persist data even if Errbot is restarted.

How to use it

Your plugin is the store, simply use self as a dictionary.

Here is a simple example for storing and retreiving a value from the store.

from errbot import BotPlugin, botcmd
class PluginExample (BotPlugin) :
@botcmd
def remember (self, msg, args):
self['TODO'] = args
@botcmd
def recall (self, msg, args):

return self['TODO']

Caveats

The storing occurs when you assign the key:

THIS WON'T WORK

d = {1}
self['FOO'] = d
d['subkey'] ' NONONONONONO '

What you need to do instead: (manual method)

THIS WORKS

da = {}

self['FOO'] = d

later

d['subkey'] = "NONONONONONO'

self['FOO'] = d # restore the full key if something changed in memory.

Or use the mutable contex manager:

34

Chapter 6. User guide

Err Documentation, Release 6.1.1

THIS WORKS AND IS CLEANER
d = {}
self['FOO'] = d

later ...
with self .mutable('FOO'") as d:

d['subkey'] = '"NONONONONONO'
it will save automatically the key

6.3.9 Configuration
Plugin configuration through the built-in /config command

Errbot can keep a simple python object for the configuration of your plugin. This avoids the need for admins to
configure settings in some kind of configuration file, instead allowing configuration to happen directly through chat
commands.

In order to enable this feature, you need to provide a configuration template (ie. a config example) by overriding the
get_configuration_ template () method. For example, a plugin might request a dictionary with 2 entries:

from errbot import BotPlugin

class PluginExample (BotPlugin) :
def get_configuration_template (self):
return {'ID_TOKEN': '00112233445566778899%aabbccddeeff’,
'USERNAME ' : 'changeme'}

With this in place, an admin will be able to request the default configuration template with /plugin con-
fig PluginExample. He or she could then give the command /plugin config PluginExample {‘ID_TOKEN’ :
‘00112233445566778899aabbccddeeff’, ‘USERNAME’:’changeme’} to enable that configuration.

It will also be possible to recall the configuration template, as well as the config that is actually set, by issuing /plugin
config PluginExample again.

Within your code, the config that is set will be in self.config:

@botcmd
def mycommand (self, mess, args):
oh I need my TOKEN !
token = self.config['ID_TOKEN']

Warning: If there is no configuration set yet, self.config will be None.

Supplying partial configuration

Sometimes you want to allow users to only supply a part of the configuration they wish to override from the template
instead of having to copy-paste and modify the complete entry.

This can be achieved by overriding configure ():

6.3. Plugin development 35

Err Documentation, Release 6.1.1

from itertools import chain

CONFIG_TEMPLATE = {'ID_TOKEN': '0011223344556677889%aabbccddeeff’,
'USERNAME' : 'changeme'}

def configure(self, configuration):
if configuration is not None and configuration != {}:
config = dict (chain (CONFIG_TEMPLATE.items (),
configuration.items()))
else:
config = CONFIG_TEMPLATE
super (PluginExample, self) .configure (configqg)

What this achieves is that it creates a Python dictionary object which contains all the values from our CON-
FIG_TEMPLATE and then updates that dictionary with the configuration received when calling the /config command.
!config must be passed a dictionary for this to work.

If you wish to reset the configuration to its defaults all you need to do is pass an empty dictionary to /config.

You’ll now also need to override get_configuration_template () and return the CONFIG_TEMPLATE in
that function:

def get_configuration_template (self):
return CONFIG_TEMPLATE

Using custom configuration checks
By default, Errbot will check the supplied configuration against the configuration template, and raise an error if the
structure of the two doesn’t match.

You need to override the check _configuration () method if you wish do some other form of configuration
validation. This method will be called automatically when an admin configures your plugin with the /config command.

Warning: If there is no configuration set yet, it will pass None as parameter. Be mindful of this situation.

Using the partial configuration trick as shown above requires you to override check_configuration (), so ata
minimum you’ll need this:

def check_configuration(self, configuration):
pass

We suggest that you at least do some validation instead of nothing but that is up to you.

6.3.10 Streams

Streams are file transfers. It can be used to store documents, index them, send generated content on the fly etc.

Waiting for incoming file transfers

The bot can be sent files from the users. You only have to implement the callback_stream () method on your
plugin to be notified for new incoming file transfer requests.

Note: not all backends supports this, check if it has been correctly implemented from the backend itself.

36 Chapter 6. User guide

Err Documentation, Release 6.1.1

For example, getting the initiator of the transfer and the content, see St ream for more info about the various fields.

from errbot import BotPlugin, botcmd
class PluginExample (BotPlugin) :

def callback_stream(self, stream):
self.send(stream.identifier, "File request from
stream.accept ()
self.send(stream.identifier, "Content:" + str(stream.fsource.read()))

:" + str(stream.identifier))

Sending a file to a user or a room

You can use send_stream request () to initiate a transfer:

stream = self.send_stream_request (msg.frm, open('/tmp/myfile.zip', 'r'), name='bills.
—zip', stream_type='application/zip")

The returned stream object can be used to monitor the progress of the transfer with stream.status, stream.transfered
etc... See Stream for more details.

6.3.11 Plugin Dependencies

Sometimes you need to be able to share a plugin feature with another. For example imagine you have a series of plugin
configured the same way, you might want to make them depend on a central plugin taking care of the configuration
that would share it with all the others.

Declaring dependencies

If you want to be able to use a plugin from another, the later needs to be activated before the former. You can ask
Errbot to do so by adding a comma separated name list of the plugins your plugin is depending on in the Core section
of your plug file like this:

[Core]

Name = MyPlugin

Module = myplugin

DependsOn = OtherPluginl, OtherPlugin2

Using dependencies

Once a dependent plugin has been declared, you can use it as soon as your plugin is activated.

from errbot import BotPlugin, botcmd
class OtherPluginl (BotPlugin) :
def activate(self):

self.my_variable = 'hello'
super () .activate ()

If you want to use it from MyPlugin:

6.3. Plugin development 37

Err Documentation, Release 6.1.1

from errbot import BotPlugin, botcmd
class MyPlugin (BotPlugin) :
@botcmd

def hello(self, msg, args):
return self.get_plugin('OtherPluginl') .my_variable

Important to note: if you want to use a dependent plugin from within activate, you need to be in activated state, for
example:

from errbot import BotPlugin, botcmd
class MyPlugin (BotPlugin) :

def activate(self):
super () .activate () # <-— needs to be xbeforex get_plugin
self.other = self.get_plugin('OtherPluginl")

@botcmd
def hello(self, msg, args):
return self.other.my_variable

6.3.12 Dynamic plugins (advanced)

Sometimes the list of commands the bot wants to expose is not known at plugin development time.
For example, you have a remote service with commands that can be set externally.
This feature allows you to define and update on the fly plugins and their available commands.

Defining new commands

You can create a commands from scratch with Command. By default it will be a botcmd () .

from a lambda
my_commandl = Command (lambda plugin, msg, args: 'received ' % msg, name='my_command

— "', doc='documentation of my_command')

or from a function

def my_command (plugin, msg, args):
mmwn
documentation of my_command.
mmwn

o

return 'received ' % msg

my_command?2 = Command (my_command)

Note: the function will by annotated by a border effect, be sure to use a local function if you want to derive commands
for the same underlying function.

38 Chapter 6. User guide

Err Documentation, Release 6.1.1

Registering the new plugin

Once you have your series of Commands defined, you can package them in a plugin and expose them on errbot with
create_dynamic_plugin ().

from activate, another bot command, poll etc.
self.create_dynamic_plugin('my_plugin', (my_commandl, my_command?2))

Refreshing a plugin

You need to detroy and recreate the plugin to refresh its commands.

self.destroy_dynamic_plugin('my_plugin')
self.create_dynamic_plugin('my_plugin', (my_commandl, my_command2, my_command3))

Customizing the type of commands and parameters

You can use other type of commands by specifying cmd_type and pass them parameters with cmd_args and
cmd_kwargs.

for example a botmatch

rel = Command(lambda plugin, msg, match: 'fffound',
name="'ffound',
cmd_type=botmatch,
cmd_args=(r'".xcheese.*S$',))

or a split_args_with

saw = Command (lambda plugin, msg, args: '+'.Jjoin(args),
name='splitme"',
cmd_kwargs={'split_args_with': ', "})

6.3.13 Scheduling

Calling a function at a regular interval

It’s possible to automatically call functions at regular intervals, using the start_poller () and stop_poller ()
methods.

For example, you could schedule a callback to be executed once every minute when your plugin gets activated:

from errbot import BotPlugin

class PluginExample (BotPlugin) :
def my_callback (self):
self.log.debug('I am called every minute')

def activate(self):
super () .activate ()
self.start_poller (60, self.my_callback)

It is also possible to specify the times parameter, which denotes how many times the function should be called, for
instance:

6.3. Plugin development 39

Err Documentation, Release 6.1.1

from errbot import BotPlugin

class PluginExample (BotPlugin) :
def my_callback(self):
self.log.debug('I got called after a minute (and just once)')

def activate (self):
super () .activate ()
self.start_poller (60, self.my_callback, times=1)

6.3.14 Webhooks

Errbot has a small integrated webserver that is capable of hooking up endpoints to methods inside your plugins.

You must configure the Webserver plugin before this functionality can be used. You can get the configuration template
using /plugin config Webserver, from where it’s just a simple matter of plugging in the desired settings.

Note: There is a /generate certificate command to generate a self-signed certificate in case you want to enable SSL
connections and do not have a certificate.

Warning: It is not recommended to expose Errbot’s webserver directly to the network. Instead, we recommend
placing it behind a webserver such as nginx or Apache.

Simple webhooks

All you need to do for a plugin of yours to listen to a specific URI is to apply the webhook () decorator to your
method. Whatever it returns will be returned in response to the request:

from errbot import BotPlugin, webhook

class PluginExample (BotPlugin) :
@webhook
def test(self, request):
self.log.debug(repr (request))
return "OK"

This will listen for POST requests on http://yourserver.tld:yourport/test/, and return “OK” as the response body.

Note: If you return None, an empty 200 response will be sent.

You can also set a custom URI pattern by providing the uri_rule parameter:

from errbot import BotPlugin, webhook

class PluginExample (BotPlugin) :
@webhook (' /example/<name>/<action>/")
def test(self, request, name, action):

o

return "User is performing " % (name, action)

Refer to the documentation on Flask’s route for details on the supported syntax (Errbot uses Flask internally).

40 Chapter 6. User guide

http://nginx.org/
https://httpd.apache.org/
http://yourserver.tld:yourport/test/
http://flask.pocoo.org/docs/1.0/api/#flask.Flask.route

Err Documentation, Release 6.1.1

Handling JSON request

If an incoming request has the MIME media type set to application/json the request will automatically be decoded as
JSON. You will receive the result of calling json.loads() on request automatically so that you won’t have to do this
yourself.

Handling form-encoded requests

Form-encoded requests (those with an application/x-www-form-urlencoded mimetype) are very simple to handle as
well, you just need to specify the form_param parameter.

A good example for this is the GitHub format which posts a form with a payload parameter:

from errbot import BotPlugin, webhook

class Github (BotPlugin) :
@webhook (' /github/', form_param = 'payload')
def notification(self, payload):
for room in self.bot_config.CHATROOM_PRESENCE:
self.send(
self.build_identifier (room),

°

'Commit on ' % payload|['repository']['name'],

The raw request

The above webhooks are convenient for simple tasks, but sometimes you might wish to have more power and have
access to the actual request itself. By setting the raw parameter of the webhook () decorator to True, you will be
able to get the bottle.BaseRequest which contains all the details about the actual request:

from errbot import BotPlugin, webhook

class PluginExample (BotPlugin) :
@webhook (raw=True)
def test (self, request):
user_agent = request.get_header ("user—agent", "Unknown")
return "Your user-agent is {}".format (user_agent)

Returning custom headers and status codes

Adjusting the response headers, setting cookies or returning a different status code can all be done by manipulating the
flask response object. The Flask docs on the response object explain this in more detail. Here’s an example of setting
a custom header:

from errbot import BotPlugin, webhook
from flask import after_this_request

class PluginExample (BotPlugin):
@webhook
def example(self, incoming_request):
@after_this_request
def add_header (response) :
response.headers['X-Powered-By'] = 'Errbot'
return "OK"

6.3. Plugin development 41

http://bottlepy.org/docs/dev/api.html#bottle.BaseRequest
http://flask.pocoo.org/docs/1.0/patterns/deferredcallbacks/
http://flask.pocoo.org/docs/1.0/api/#response-objects

Err Documentation, Release 6.1.1

Flask also has various helpers such as the abort() method. Using this method we could, for example, return a 403
forbidden response like so:

from errbot import BotPlugin, webhook
from flask import abort

class PluginExample (BotPlugin) :
@webhook
def example(self, incoming_request) :
abort (403, "Forbidden™)

Testing a webhook through chat

You can use the /webhook command to test webhooks without making an actual HTTP request, using the following
format: /'webhook test [endpoint] [post_content]

For example:

'webhook test github payload=%7B%22pusher%$22%3A%7B%22name%$22%3A%22gbin%22%2C%22email
—%22%3A%22gbin%40gootz.net%22%7D%2C%22repository%$22%3A%7B%22name%$22%3A%22test%$22%2C
—%22created_at%$22%3A%222012-08-12T16%3A09%3A43-07%3A00%22%2C%22has_wiki%$22%3Atrue%2C
—%223517ze%22%3A128%2C%22private%22%3Afalse%2C%22watchers%$22%3A0%2C%22url%22%3A%22https
—%$3A%2F%2Fgithub.com%2Fgbin%2Ftest%$22%2C%22fork%22%3Afalse%2C%22pushed_at%$22%3A
—%222012-08-12T16%3A26%3A35-07%3A00%22%2C%22has_downloads%$22%3Atrue%2C%220pen_issues
—%22%3A0%2C%22has_issues%$22%3Atrue%$2C%22stargazers%$22%3A0%2C%22forks%$22%3A0%2C
—%22description%$22%3A%22ignore%20this%$2C%20this%20is%20for%20testing%20the%20new
—%20err%20github%20integration%22%2C%$220wner%$22%3A%7B%22name%22%3A%22gbin%22%2C
—%22email%22%3A%22gbin%40gootz.net%$22%7D%7D%2C%22forced%$22%3Afalse%2C%22afters22%3A
—%$22b3cd9%e66e52e4783c1alb98fbaaad6258669275f£%22%2C%22head_commit%$22%3A%7B%22added%22
—%3A%5B%5D%2C%22modified%22%3A%5B%22README . md%22%5D%2C%22timestamp%22%3A%222012-08~
—12T16%3A24%3A25-07%3A00%22%2C%22removed%22%3A%5B%5D%2C%22author%22%3A%7B%22name%22
—%3A%22Guillaume%$20BINET$22%2C%22username%$22%3A%22gbin%22%2C%22email%$22%3A%22gbin
—%40gootz.net%22%7D%2C%22url%$22%3A%22https%3A%2F%2Fgithub. com%2Fgbin%2Ftest$2Fcommit
—%2Fb3cd9e66e52e4783c1alb98fbaaad6258669275£%22%2C%$221d%22%3A
—%22pb3cd9%e66e52e4783c1alb98fbaaad6258669275f%22%2C%22distinct%$22%3Atrue%s2C%22message
—%22%3A%22v011a%22%2C%22committer%22%3A%7B%22name%$22%3A%22Guillaume%$20BINET$22%2C
—%22username%$22%3A%22gbin%22%2C%22email%$22%3A%22gbin%40gootz.net%$22%7D%7D%2C
—%22deleted%22%3Afalse%2C%22commits%$22%3A%5B%7B%22added%22%3A%5B%5D%2C%22modified%22
—%3A%5B%22README . md%22%5D%2C%22t imestamp%22%$3A%222012-08-12T16%3A24%3A25-07%3A00%22
—%2C%22removed$22%3A%5B%5D%2C%22author$22%3A%7B%22name%$22%3A%22Guillaume$20BINETS22
—%2C%22username%$22%$3A%22gbin%22%2C%22email%$22%3A%22gbin%40gootz.net%$22%7D%2C%22url%s22
—%3A%22https$3A%2F%2Fgithub.com%2Fgbin%2Ftest%$2Fcommit
—%2Fb3cd9e66e52e4783c1alb98fbaaad6258669275£%22%2C%221d%22%3A
—%22pb3cd9%e66e52e4783c1alb98fbaaad6258669275£%22%2C%22distinct%$22%3Atrue%s2C%22message
—%22%3A%22v011a%22%2C%22committer%22%3A%7B%22name%$22%3A%22Guillaume$20BINET$22%2C
—%22username%$22%3A%22gbin%22%2C%22email%$22%3A%22gbin%40gootz.net%$22%7D%7D%5D%2C%22ref
—%22%3A%22refs%2Fheads%2Fmaster%$22%2C%22before%22%3A
—%2229p1£5e5907799073b6d792ce76076c200987265%22%2C%22compare%$22%3A%22https%$3A%2F

—%2Fgithub.com%$2Fgbin%2Ftest%2Fcompare%2F29b1£5e59b77...b3cd%e66e52e%22%2C%22created
—~%22%3Afalse%7D

Note: You can get a list of all the endpoints with the /webstatus command.

42 Chapter 6. User guide

Err Documentation, Release 6.1.1

6.3.15 Testing your plugins

Just as Errbot has tests that validates that it behaves correctly so should your plugin. Errbot is tested using Python’s
py.test module and because we already provide some utilities for that we highly advise you to use py.test too.

We're going to write a simple plugin named myplugin.py with a MyPlugin class. It’s tests will be stored in
test_myplugin.py in the same directory.

Interacting with the bot

Lets go for an example, myplugin.py:

from errbot import BotPlugin, botcmd

class MyPlugin (BotPlugin) :
@botcmd
def mycommand (self, message, args):
return "This is my awesome command"

And myplugin.plug:

[Core]
Name = MyPlugin
Module = myplugin

[Documentation]
Description = my plugin

This does absolutely nothing shocking, but how do you test it? We need to interact with the bot somehow, send it
Imycommand and validate the reply. Fortunatly Errbot provides some help.

Our test, test_myplugin.py:

pytest_plugins = ["errbot.backends.test"]

extra_plugin_dir = '.'
def test_command (testbot) :
testbot .push_message (' !mycommand"')
assert 'This is my awesome command' in testbot.pop_message ()

Lets walk through this line for line. First of all, we specify our pytest fixture location test in the backends tests, to
allow us to spin up a bot for testing purposes and interact with the message queue. To avoid specifying the module in
every test module, you can simply place this line in your conftest.py.

Then we set extra_plugin_dir to ., the current directory so that the test bot will pick up on your plugin.

After that we define our first fest_ method which simply sends a command to the bot using push_message () and
then asserts that the response we expect, “This is my awesome command” is in the message we receive from the bot
which we get by calling pop_message ().

You can assert the response of a command using the method assertCommand of the testbot. test-
bot.assertCommand(‘!mycommand’, ‘This is my awesome command’) to achieve the equivalent of pushing message
and asserting the response in the popped message.

6.3. Plugin development 43

http://pytest.org
http://doc.pytest.org/en/latest/writing_plugins.html#conftest-py-local-per-directory-plugins

Err Documentation, Release 6.1.1

Helper methods
Often enough you’ll have methods in your plugins that do things for you that are not decorated with @botcmd since
the user never calls out to these methods directly.

Such helper methods can be either instance methods, methods that take self as the first argument because they need
access to data stored on the bot or class or static methods, decorated with either @classmethod or @ staticmethod:

class MyPlugin (BotPlugin) :
@botcmd
def mycommand (self, message, args):
return self.mycommand_helper ()

@staticmethod
def mycommand_helper () :
return "This is my awesome command"

The mycommand_helper method does not need any information stored on the bot whatsoever or any other bot state. It
can function standalone but it makes sense organisation-wise to have it be a member of the MyPlugin class.

Such methods can be tested very easily, without needing a bot:

import myplugin

def test_mycommand_helper () :
expected = "This is my awesome command"
result = myplugin.MyPlugin.mycommand_helper ()
assert result == expected

Here we simply import myplugin and since it’s a @staticmethod we can directly access it through myplu-
gin.MyPlugin.method().

Sometimes however a helper method needs information stored on the bot or manipulate some of that so you declare
an instance method instead:

class MyPlugin (BotPlugin) :
@botcmd
def mycommand(self, message, args):
return self.mycommand_helper ()

def mycommand_helper (self):
return "This is my awesome command"

Now what? We can’t access the method directly anymore because we need an instance of the bot and the plugin and
we can’t just send /mycommand_helper to the bot, it’s not a bot command (and if it were it would be /mycommand
helper anyway).

What we need now is get access to the instance of our plugin itself. Fortunately for us, there’s a method that can help
us do just that:

extra_plugin_dir = '.'

def test_mycommand_helper (testbot) :
plugin = testbot._bot.plugin_manager.get_plugin_obj_by_name ('MyPlugin')

expected = "This is my awesome command"
result = plugin.mycommand_helper ()
assert result == expected

44 Chapter 6. User guide

Err Documentation, Release 6.1.1

There we go, we first grab our plugin using a helper method on plugin_manager and then simply execute the
method and compare the result with the expected result. You can also access @ classmethod or @ staticmethod methods
this way, but you don’t have to.

Sometimes a helper method will be making HTTP or API requests which might not be possible to test directly. In
that case, we need to mock that particular method and make it return the expected value without actually making the
request.

URL = 'http://errbot.io'

class MyPlugin (BotPlugin) :
@botcmd
def mycommand(self, message, args):
return self.mycommand_helper ()

def mycommand_helper (self) :
return (requests.get (URL) .status_code)

What we need now is to somehow replace the method making the request with our mock object and inject_mocks
method comes in handy.

Refer unittest.mock for more information about mock.

from unittest.mock import MagicMock
extra_plugin_dir = '.'

def test_mycommand_helper (testbot) :
helper_mock = MagicMock (return_value='200")
mock_dict = {'mycommand helper': helper_mock}
testbot.inject_mocks ('MyPlugin', mock_dict)
testbot.push_message (' !mycommand')

expected = '200"

result = testbot.pop_message ()

assert result == expected
Pattern

It’s a good idea to split up your plugin in two types of methods, those that directly interact with the user and those that
do extra stuff you need.

If you do this the @botcmd methods should only concern themselves with giving output back to the user and calling
different other functions it needs in order to fulfill the user’s request.

Try to keep as many helper methods simple, there’s nothing wrong with having an extra helper or two to avoid having
to nest fifteen if-statements. It becomes more legible, easier to maintain and easier to test.

If you can, try to make your helper methods @staticmethod decorated functions, it’s easier to test and you don’t need
a full running bot for those tests.

All together now

myplugin.py:

from errbot import BotPlugin, botcmd

(continues on next page)

6.3. Plugin development 45

https://docs.python.org/3/library/unittest.mock.html

Err Documentation, Release 6.1.1

(continued from previous page)

class MyPlugin (BotPlugin) :
@botcmd
def mycommand (self, message, args):
return self.mycommand_helper ()

@botcmd
def mycommand_another (self, message, args):
return self.mycommand_another_helper ()

@staticmethod
def mycommand_helper () :
return "This is my awesome command"

def mycommand_another_helper (self):
return "This is another awesome command"

myplugin.plug:

[Core]
Name = MyPlugin
Module = myplugin

[Documentation]
Description = my plugin

test_myplugin.py:

import myplugin
extra_plugin_dir = '.'

def test_mycommand (testbot) :
testbot.push_message (' !mycommand")
assert 'This is my awesome command' in testbot.pop_message ()

def test_mycommand_another (testbot) :
testbot.push_message (' !mycommand another')
assert 'This is another awesome command' in testbot.pop_message ()

def test_mycommand_helper () :
expected = "This is my awesome command"
result = myplugin.MyPlugin.mycommand_helper ()
assert result == expected

def test_mycommand_another_helper () :
plugin = testbot._bot.plugin_manager.get_plugin_obj_by_name ('MyPlugin')

expected = "This is another awesome command"
result = plugin.mycommand_another_helper ()
assert result == expected

You can now simply run py . test to execute the tests.

PEP-8 and code coverage

If you feel like it you can also add syntax checkers like pep8 into the mix to validate your code behaves to certain
stylistic best practices set out in PEP-8.

46 Chapter 6. User guide

Err Documentation, Release 6.1.1

First, install the pep8 for py.test: pip install pytest-—-pepS8.
Then, simply add —pep$ to the test invocation command: py.test —pepS.
You also want to know how well your tests cover you code.

To that end, install coverage: pip install coverage and then run your tests like this: coverage run
—-—-source myplugin -m py.test —--pep8.

You can now have a look at coverage statistics through coverage report:

Name Stmts Miss Cover

myplugin 49 0 100%

It’s also possible to generate an HTML report with coverage html and opening the resulting htmlcov/index.html.

Travis and Coveralls

Last but not least, you can run your tests on Travis-CI so when you update code or others submit pull requests the tests
will automatically run confirming everything still works.

In order to do that you’ll need a .travis.yml similar to this:

language: python
python:
- 2.7
- 3.3
- 3.4
install:
- pip install -g errbot pytest pytest-pep8 --use-wheel
- pip install -g coverage coveralls —--use-wheel
script:
- coverage run --source myplugin -m py.test —--pepS8
after_success:
— coveralls
notifications:
email: false

Most of it is self-explanatory, except for perhaps the after_success. The author of this plugin uses Coveralls.io to keep
track of code coverage so after a successful build we call out to coveralls and upload the statistics. It’s for this reason
that we pip install [..] coveralls [..] in the .travis.yml.

The -g flag causes pip to be a lot more quiet and —use-wheel will cause pip to use wheels if available, speeding up your
builds if you happen to depend on something that builds a C-extension.

Both Travis-CI and Coveralls easily integrate with Github hosted code.

6.3.16 Logging
Logging information on what your plugin is doing can be a tremendous asset when managing your bot in production,
especially when something is going wrong.

Errbot uses the standard Python logging library to log messages internally and provides a logger for your own plugins
to use as well as self.log. You can use this logger to log status messages to the log like this:

6.3. Plugin development 47

http://pytest.org
https://travis-ci.org
https://coveralls.io
http://www.python.org/dev/peps/pep-0427/
https://docs.python.org/3/library/logging.html

Err Documentation, Release 6.1.1

from errbot import BotPlugin

class PluginExample (BotPlugin) :
def callback_message(self, message):
self.log.info ("I Jjust received a message!")

6.3.17 Exception Handling

Properly handling exceptions helps you build plugins that don’t crash or produce unintended side-effects when the user
or your code does something you did not expect. Combined with logging, exceptions also allow you to get visibility
of areas in which your bot is failing and ultimately address problems to improve user experience.

Exceptions in Errbot plugins should be handled slightly differently from how exceptions are normally used in Python.
When an unhandled exception is raised during the execution of a command, Errbot sends a message like this:

Computer says nooo. See logs for details:
<exception message here>

The above is neither helpful nor user-friendly, as the exception message may be too technical or brief (notice there is
no traceback) for the user to understand. Even if you were to provide your own exception message, the “Computer
says nooo ...” part is neither particularly attractive or informative.

When handling exceptions, follow these steps:
* trap the exception as you usually would
* log the exception inside of the except block
— self.log.exception('Descriptive message here')
— import and use the logging module directly if you don’t have access to self
— self.logis just a convenience wrapper for the standard Python 1o0gging module

* send a message describing what the user did wrong and recommend a solution for them to try their command
again

* do not re-raise your exception in the except block as you normally would. This is usually done in order to
produce an entry in the error logs, but we’ve already logged the exception, and by not re-raising it, we prevent
that automatic “Computer says nooo. ...” message from being sent

Also, note that there is a errbot .ValidationException class which you can use inside your helper methods
to raise meaningful errors and handle them accordingly.

Here’s an example:

from errbot import BotPlugin, arg_botcmd, ValidationException

class FooBot (BotPlugin) :
mmn "An G‘Xample bot mmn

@arg botemd ('first_name', type=str)
def add_first_name(self, message, first_name):
"""Add your first name if it doesn't contain any digits"""
try:
FooBot.validate_first_name (first_name)
except ValidationException as exc:
self.log.exception (
'first_name= contained a digit' % first_name

(continues on next page)

48 Chapter 6. User guide

https://docs.python.org/3/howto/logging.html

Err Documentation, Release 6.1.1

(continued from previous page)

)

return 'Your first name cannot contain a digit.'

Add some code here to add the given name to your database

return "Your name has been added."

@staticmethod
def validate_first_name (first_name) :
if any(char.isdigit () for char in first_name):
raise ValidationException (
"first_name= contained a digit" % first_name

6.3.18 Plugin compatibility settings

Errbot compatibility

Sometimes when your plugin breaks under a specific version of Errbot, you might want to warn the user of your plugin
and not load it.

You can do it by adding an Errbet section to your plug file like this:

[Core]
Name = MyPlugin
Module = myplugin

[Documentation]
Description = my plugin
[Errbot]

Min=2.4.0

Max=2.6.0

If the Errbot section is omitted, it defaults to “compatible with any version”.
If the Min option is omitted, there is no minimum version enforced.
If the Max option is omitted, there is no maximum version enforced.

Versions need to be a 3 dotted one (ie 2.4 is not allowed but 2.4.0 is). And it understands those suffixes:

* “-beta”
e “rcl”
o “rc2”
* etc.

For example: 2.4.0-rcl
note: -betal or -rc are illegal. Only rc can get a numerical suffix.
6.3.19 Backend-specifics

Errbot uses external libraries for most backends, which may offer additional functionality not exposed by Errbot in a
generic, backend-agnostic fashion.

6.3. Plugin development 49

Err Documentation, Release 6.1.1

It is possible to access the underlying client used by the backend you are using in order to provide functionality that
isn’t otherwise available. Additionally, interacting directly with the bot internals gives you the freedom to control
Errbot in highly specific ways that may not be officially supported.

Warning: The following instructions describe how to interface directly with the underlying bot object and clients
of backends. We offer no guarantees that these internal APIs are stable or that a given backend will continue to use
a given client in the future. The following information is provided as-is without any official support. We can give
no guarantees about API stability on the topics described below.

Getting to the bot object

From within a plugin, you may access self._bot in order to get to the instance of the currently running bot class. For
example, with the Telegram backend this would be an instance of TelegramBackend:

>>> type(self._bot)
<class 'errbot.backends.TelegramBackend'>

To find out what methods each bot backend has, you can take a look at the documentation of the various backends in
the errbot . backends package.

Plugins may use the self._bot object to offer tailored, backend-specific functionality on specific backends. To determine
which backend is being used, a plugin can inspect the self._bot.mode property. The following table lists all the values
for mode for the official backends:

Backend Mode value
hipchat hipchat

irc irc

slack slack
telegram messenger | telegram
test test

text text

Xmpp Xmpp

Here’s an example of using a backend-specific feature. In Slack, emoji reactions can be added to messages the bot
receives using the add_reaction and remove_reaction methods. For example, you could add an hourglass to messages
that will take a long time to reply fully to.

from errbot import BotPlugin, botcmd

class PluginExample (BotPlugin):
@botcmd
def longcompute (self, mess, args):
if self._bot.mode == "slack":
self._bot.add_reaction(mess, "hourglass")
else:
yield "Finding the answer..."

time.sleep(10)
yield "The answer is: 42"

if self._bot.mode == "slack":
self._bot.remove_reaction (mess, "hourglass")

50 Chapter 6. User guide

Err Documentation, Release 6.1.1

Getting to the underlying client library

Most of the backends use a third-party library in order to connect to their respective network. These libraries often
support additional features which Errbot doesn’t expose in a generic way so you may wish to make use of these in
order to access advanced functionality.

Backends set their own attribute(s) to point to the underlying libraries’ client instance(s). The following table lists
these attributes for the official backends, along with the library used by the backend:

Backend Library Attribute(s)

hipchat sleekxmpp + hypchat | self._bot.conn self._bot.conn.hypchat
irc irc self. bot.connself. bot.conn.connection
slack slackclient self._bot.sc

telegram messenger | telegram-python-bot self._bot.telegram

xmpp sleekxmpp self._bot.conn

6.4 Flow development

Flows are a feature in Errbot to enable plugin designers to chain several plugin commands together into a “conversa-
tion”.

For example, imagine interacting with a bot that needs more that one command, like setting up a poll in a chatroom:

User: !poll new Where do we go for lunch ?

Bot: Flow poll_setup started, you can continue with:
'poll newoption <your option>

User: !poll newoption Greek

Bot: Option added, current options:
- Greek

Bot: You can continue with:
!'poll newoption <your option>
'poll start

User: !poll newoption French

Bot: Option added, current options:
- Greek
- French

Bot: You can continue with:
'poll newoption <your option>
'poll start

User: !poll start
[...]

In this guide we will explain the underlying concepts and basics of writing flows. Prerequesite: you need to be familiar
with the normal errbot plugin development.

6.4. Flow development 51

https://pypi.python.org/pypi/sleekxmpp
https://pypi.python.org/pypi/hypchat/
https://pypi.python.org/pypi/irc/
https://pypi.python.org/pypi/slackclient/
https://pypi.python.org/pypi/python-telegram-bot
https://pypi.python.org/pypi/sleekxmpp

Err Documentation, Release 6.1.1

6.4.1 Flows Concepts

Static structure

Flows are represented as graphs. Those graphs have a root (FlowRoot), which is basically their entry point, and are
composed of nodes (FlowNodes). Every node represents an Errbot command.

Fig. 1: Example of a flow construction.

This defines a simple flow where for example this sequence of commands is possible:

lcommandl !command2 !command3 !commandl !command2 !command3 !last_command

On the connections of those nodes (), you can attach predicates, predicates are simple conditions to allow the flow to
continue without any user intervention.

Execution

At execution time, Errbot will keep track of who started the flow, and at what step (node) it is currently. On top of that,
Errbot will initialize a context for the entire conversation. The context is a simple Python dictionary and it is attached
to only one conversation. Think of this like the persistence for plugins, but linked to a conversation only.

If you don’t specify any predicate when you build your flow, every single step is “manual”. It means that Errbot will
wait for the user to execute one of the possible commands at every step to advance along the graph.

Predicates can be used to trigger a command automatically. Predicates are simple functions saying to Errbot, “this
command has enough in the context to be able to execute without any user intervention”. At any time if a predicate is
verified after a step is executed, Errbot will proceed and execute the next step.

6.4.2 Basic Flow Definition

Flows are like plugins

They are defined by a . £1ow file, similar to the plugin ones:

[Core]
Name = MyFlows.
Module = myflows.py

[Documentation]

Description = my documentation.
[Python]

Version = 2+

Now in the myflows . py file you will have pretty familiar structure with a BotFlow as type and @botflow as flow
decorator:

from errbot import botflow, FlowRoot, BotFlow

class MyFlows (BotFlow) :
"mrm Conversation flows for Errbot"""

(continues on next page)

52 Chapter 6. User guide

Err Documentation, Release 6.1.1

(continued from previous page)

@botflow
def example(self, flow: FlowRoot) :
""" Docs for the flow example comes here """

[...]

Errbot will pass the root of the flow as the only parameter to your flow definition so you can build your graph from
there.

Making a simple graph

Within your flow, you can connect commands together. For example, to make a simple linear flow between ! first,
!secondand !third:

@botflow
def example(self, flow: FlowRoot) :

first_step = flow.connect ('first') # first is a command name from any,,
—loaded plugin.

second_step = first_step.connect ('second')

third_step = second_step.connect ('third")

You can represent this flow like this:

O is the state “not started” for the flow example.
You can start this flow manually by doing ! flows start example.

The bot will tell you that it expects a ! first command:

Once you have executed ! first, you will be in that state:

The bot will tell you that it expects ! second, etc.

Making a flow start automatically

Now, usually flows are linked to a first action your users want to do. For example: !poll new, !vm create,
!report init or first commands like that that suggests that you will have a follow-up.

To trigger a flow automatically on those first commands, you can use auto_trigger.

@botflow

def example(self, flow: FlowRoot) :
first_step = flow.connect ('first', auto_trigger=True)
second_step = first_step.connect ('second')
third_step = second_step.connect ('third")

You can still represent this flow like this:
BUT, when a user will execute a ! £irst command, the bot will instantly instantiate a Flow in this state:

And tell the user that ! second is the follow-up.

6.4. Flow development 53

Err Documentation, Release 6.1.1

Flow ending

If a node has no more children and a user passed it, it will automatically end the flow.

Sometimes, with loops etc., you might want to explicitly mark an END FlowNode with a predicate. You can do it like
this, for example for a guessing game plugin:

In the flow code...

from errbot import botflow, FlowRoot, BotFlow, FLOW_END

class GuessFlows (BotFlow) :
"rr Conversation flows related to polls"""

@botflow

def guess(self, flow: FlowRoot):
""" This is a flow that can set a guessing game."""
setup Flow
game_created = flow.connect ('tryme', auto_trigger=True)
one_guess = game_created.connect ('guessing')
one_guess.connect (one_guess) # loop on itself
one_guess.connect (FLOW_END, predicate=lambda ctx: ctx['ended'])

6.4.3 Advanced Flow Definitions

Storing something in the flow context

Flows have a state the plugins can use to store some contextual information. Let’s take back out simple linear flow:

@botflow

def example (self, flow: FlowRoot) :
first_step = flow.connect ('first')
second_step = first_step.connect ('second')
third_step = second_step.connect ('third")

You can represent this flow like this:

You can store something in the context, for example in ! £irst and retrieve it in ! second. Like this:

@botcmd
def first(self, msg, args):
msg.ctx['mydata'] = 'Hello'

return 'First done!'

@botcmd
def second(self, msg, args):
return msg.ctx['mydata'] + ' World!'

msg.ctx is a dictionary created every time a flow starts.

54 Chapter 6. User guide

Err Documentation, Release 6.1.1

Making a step execute automatically
In our previous example, if msg.ctx ['mydata'] is populated, we can arguably expect that Errbot should not wait
for the user to enter ! second to execute it and just proceed by itself.

You can do that by defining a predicate, which is a simple function that returns True if the conditions to proceed to
the next step are met. The function takes only one parameter, the context, the same one you get from msg. ctx.

@botflow
def example (self, flow: FlowRoot) :
first_step = flow.connect ('first')
second_step = first_step.connect ('second',
predicate=lambda ctx: 'mydata' in ctx)
third_step = second_step.connect ('third")

Now, after starting the flow with ! flows start example, the state will be:

Errbot will wait for ! first. But then, once the user executes ! first, it will see that the predicate between !
first and ! second is verified, so will go on and execute ! second, displaying ‘Hello World” and proceed to wait
for 'third:

Branching in the graph

It is perfectly possible to branch out to several possibilities (possibly with different predicates).

@botflow
def example(self, flow: FlowRoot) :
first_step = flow.connect ('first')
second_step = first_step.connect ('second',
predicate=lambda ctx: 'mydata' in ctx)
other = first_step.connect ('other_second’',

predicate= lambda ctx: 'otherdata' in ctx)

This will do something like that:
In manual mode, the bot will tell the user about his 2 possible options to continue.
Making a looping graph

You can also perfectly reexecute a part of a graph in a “loop”. You can branch directly the node object instead of the
command name in that case.

@botflow
def example (self, flow: FlowRoot) :
first_step = flow.connect ('first')
second_step = first_step.connect ('second')
third_step = second_step.connect (first_step, predicate=...)

final_step = third_step.connect('final', predicate=...)

You can represent this flow like this:

The typical use case is to repeatedly ask something to the user.

6.4. Flow development 55

Err Documentation, Release 6.1.1

6.5 [Advanced] Backend development

A backend is the glue code to connect Errbot to a chatting service. Starting with Errbot 2.3.0, backends can be
developed out of the main repository. This documentation is there to guide you making a new backend for a chatting
service but is also interesting to understand more core concepts of Errbot.

It is important to understand the core concepts of Errbot before starting to work on a backend.

6.5.1 Architecture

Backends are just a specialization of the bot, they are what is instanciated as the bot and are the entry point of the bot.
Following this logic a backend must inherit from ErrBot.
ErrBot inherits itself from Backend. This is where you can find what Errbot is expecting from backend.

You’ll see a series of methods simply throwing the exception Not ImplementedError. Those are the one you need
to implement to fill up the blanks.

6.5.2 Ildentifiers

Every backend have a very specific way of addressing who, where and how to speak to somebody.

Lifecycle: identifiers are either created internally by the backend or externally by the plugins from
build identifier().

There are 2 types of identifiers:
* aperson

* aperson in a chatroom

6.5.3 Identifier for a person

It is important to note that for some backends you can infer what a person is from what a person in a chatroom is, but
for privacy reason you cannot on some backends ie. you can send a private message to a person in a chatroom but if
the person leaves the room you have no way of knowing how to contect her/him personally.

Backends must implement a specific Identifier class that matches their way of identifying those.

For example Slack has a notion of userid and channeid you can find in the SlackIdentifier which is completely
opaque to ErrBot itself.

But you need to implement a mapping from those private parameters to those properties:

* person: this needs to be a string that identifies a person. This should be enough info for the backend to contact
this person. This should be a secure and sure way to identify somebody.

e client: this will identify optionally as a string additional information or channel from where this person is
sending a message. For example, some backends open a one to one room to chat, or some backends identifies
the current peripheral from which the person is sending a message from (mobile, web, ...)

56 Chapter 6. User guide

Err Documentation, Release 6.1.1

Some of those strings are completely unreadable for humans ie. U00234FBE for a person. So you need to provide
more human readable info:

* nick: this would be the short name refering to that person. ie. gbin

* displayName: (optionally) this would give for example a full name ie. Guillaume Binet. This is often found in
professional chatting services.

6.5.4 Identifier for a person in a chatroom
This is simply an Identifier with an added property: room. The string representation of room should give a charoom
identifier (see below).

See for example SlackMUCIdentifier

6.5.5 Chatrooms / MUCRooms

In order to implement the various MUC related APIs you’ll find from Backend, you’ll need to implement a Room
class. To help guide you, you can inherit from MUCRoom and fill up the blanks from the NotImplementedError.

Lifecycle: Those are created either internally by the backend or externally through join_room () from a string
identifier.

6.6 [Advanced] Storage Plugin development

A storage plugin is the glue code that tells Errbot how to store the persistent data the plugins and the bot itself are
producing. Starting with Errbot 3.3.0, storage plugins can be developed out of the main repository. This documentation
is there to guide you making a new storage plugin so you can connect Errbot to your favorite database.

6.6.1 Architecture

Storage plugins are instantiated in 2 stages.
The first stage is storage plugin discovery and is similar to normal bot plugins:

 Errbot scans errbot/storage and config. BOT_EXTRA_STORAGE_PLUGINS_DIR for .plug files pointing to plu-
gins implementing St oragePluginBase.

* Once the correct plugin from config. STORAGE is found, it is built with the bot config as its __init__ parameter.

* By calling super().__init_ on StoragePluginBase, Errbot will populate self._storage_config from con-
fig. STORAGE_CONFIG. This configuration should contain the custom parameters needed by your plugin to be
able to connect to your database/storage ie. url, port, path, credentials ... You need to document them clearly
so your users can set config. STORAGE_CONFIG correctly.

e Asyoucan see in StoragePluginBase, you just have to implement the open method there.
The second stage is opening the storage, which is done using the open method:

* Various parts of Errbot may need separate key/value storage, the open method has a namespace to track those.
For example, the internal BotPluginManager will open the namespace core to store the bot plugins and
their config, the installed repos, etc.

* open needs to return a StorageBase, which exposes the various actions that Errbot can call on the storage
(set, get, ...).

6.6. [Advanced] Storage Plugin development 57

Err Documentation, Release 6.1.1

* You don’t need to track the lifecycle of the storage, it will be enforced externally: no double-close, double-open,
get after close, etc.

Plugins are collections.MutableMapping and use StorelMixin as an adapter from the mapping accessors
to the St orageBase implementation.

6.6.2 Testing

Storage plugins are completely independent from Errbot itself. It should be easy to instantiate and test them externally.

6.6.3 Example

You can have a look at the internal shelf implementation Shel fStorage

6.7 Logging to Sentry

According to the official website. ..
Sentry is an event logging platform primarily focused on capturing and aggregating exceptions.

It was originally conceived at DISQUS in early 2010 to solve exception logging within a Django applica-
tion. Since then it has grown to support many popular languages and platforms, including Python, PHP,
Java, Ruby, Node.js, and even JavaScript.

6.7.1 Come again? Just what is Sentry, exactly?

The official documentation explains it better:

Sentry is a realtime event logging and aggregation platform. At its core it specializes in monitoring errors
and extracting all the information needed to do a proper post-mortem without any of the hassle of the
standard user feedback loop.

If that sounds like something you’d want to gift your precious Errbot instance with, then do keep on reading :)

6.7.2 Setting up Sentry itself

Installing and configuring sentry is beyond the scope of this document. However, there are two options available to
you. You can either get a hosted account, or grab the code and run your own server instead.

6.7.3 Configuring Errbot to use Sentry

Once you have an instance of Sentry available, you’ll probably want to create a team specifically for Errbot first.

When you have, you should be able to access a page called “Client configuration”. There, you will be presented with
a so-called DSN value, which has the following format:

http://0000000000000000:000000000000000000 @ sentry.domain.tld/0
To setup Errbot with Sentry:
* Open up your bot’s config.py
e Set BOT_LOG_SENTRY to True and fill in SENTRY_DSN with the DSN value obtained previously

58 Chapter 6. User guide

https://www.getsentry.com/about/
http://sentry.readthedocs.org/en/latest/index.html
https://www.getsentry.com/pricing/
http://sentry.readthedocs.org/en/latest/index.html
http://0000000000000000:000000000000000000@sentry.domain.tld/0

Err Documentation, Release 6.1.1

* Optionally adjust SENTRY_LOGLEVEL to the desired level
¢ Optionally adjust SENTRY_TRANSPORT to the desired transport
* Restart Errbot

You can find a list of Sentry transport classes here.

You should now see Exceptions and log messages show up in your Sentry stream.

6.7. Logging to Sentry 59

https://docs.sentry.io/clients/python/transports/

Err Documentation, Release 6.1.1

60

Chapter 6. User guide

CHAPTER /

Getting involved

7.1 Contributing

If you would like to contribute to the project, please do not hesitate to get involved! Here you can find how best to get
started.

7.1.1 Contributing to Errbot itself

Clone Errbot
All development on Errbot happens on GitHub. If you’d like to get involved, just fork the repository and make changes
in your own repo. When you are satisfied with your changes, just open a pull request with us and we’ll get it reviewed

as soon as we can! Depending on our thoughts, we might decide to merge it in right away, or we may ask you to
change certain parts before we will accept the change.

Run Errbot from source

Clone you github fork repo locally and install errbot in development mode from the root of the repo with:

pip install -e .

From there, anytime you execute errbot it will run from the checked out version of Errbot with all your local changes
taken into account.

Preparing your pull request

In order to make the process easy for everyone involved, please follow these guidelines as you open a pull request.

* Make your changes on a separate branch, preferably giving it a descriptive name.

61

https://github.com/errbotio/errbot
https://github.com/errbotio/errbot/fork
https://help.github.com/articles/using-pull-requests
http://git-scm.com/book/en/Git-Branching

Err Documentation, Release 6.1.1

* Split your work up into smaller commits if possible, while making sure each commit can still function on its
own. Do not commit work-in-progress code - commit it once it’s working.

* Run tox before opening your pull request, and make sure all tests pass. You can install tox with pip install
tox

* If you can, please add tests for your code. We know large parts of our codebase are missing tests, so we won’t
reject your code if it lacks tests, though.

7.1.2 Contributing documentation & making changes to the website

errbot.io is created using Sphinx, which also doubles as a generator for our (API) documentation. The code for it is in
the same repository as Errbot itself, inside the docs folder. To make changes to the documentation or the website, you
can build the HTML locally as follows:

Change directory into the docs folder

cd docs/

Install the required extra dependencies

pip install -r requirements.txt

Generate the static HTML

make html

Then, open the generated _build/html/index.html in a browser

To submit your changes back to us, please make your change in a separate branch as described in the previous section,
then open a pull request with us.

Note: You must do this with Python 3, Python 2 is unsupported.

7.2 Issues and feature requests

Please report issues or feature requests on the issue tracker on GitHub.

When reporting issues, please be as specific as possible. Include things such as your Python version, platform, debug
logs, and a description of what is happening. If you can tell us how to reproduce the issue ourselves, this makes it a
lot easier for us to figure out what is going on, as well.

7.3 Getting help

The best place to get help if you get stuck with anything is to ask for advice on our Gitter chat room. If nobody is
around to help you, opening an issue on the issue tracker is your next best option.

If you have a code-related question concerning (plugin) development it’s best to ask your question on Stack Overflow,
tagged errbot.

62 Chapter 7. Getting involved

http://www.errbot.io/
http://sphinx-doc.org/
https://github.com/errbotio/errbot/tree/master/docs/
https://github.com/errbotio/errbot/issues/
https://gitter.im/errbotio/errbot
https://github.com/errbotio/errbot/issues/
http://stackoverflow.com/questions/tagged/errbot

CHAPTER 8

APl documentation

8.1 errbot package

8.1.1 Subpackages

errbot.backends package

Submodules
errbot.backends.base module

class errbot.backends.base.Backend (_)
Bases: abc .ABC

Implements the basic Bot logic (logic independent from the backend) and leaves you to implement the missing
parts.

MSG_ERROR_OCCURRED = 'Sorry for your inconvenience. An unexpected error occurred.'

__init_ ()
Those arguments will be directly those put in BOT_IDENTITY

build_identifier (text_representation: str) — errbot.backends.base.ldentifier

build_message (fext: str) — errbot.backends.base.Message
You might want to override this one depending on your backend

build_reply (msg: errbot.backends.base.Message, text: str = None, private: bool = False, threaded:

bool = False)
Should be implemented by the backend

callback_presence (presence: errbot.backends.base.Presence) — None
Implemented by errBot.

63

Err Documentation, Release 6.1.1

callback_room_joined (room: errbot.backends.base.Room) — None
See ErrBot

callback_room_left (room: errbot.backends.base.Room) — None

See ErrBot
callback_room topic (room: errbot.backends.base.Room) — None
See ErrBot
change_presence (status: str = ’online’, message: str = ”) — None
Signal a presence change for the bot. Should be overridden by backends with a super().send_message()
call.

cmd_history = {}

connect () — Any
Connects the bot to server or returns current connection

connect_ callback () — None
disconnect_callback () — None

is_from_self (msg: errbot.backends.base.Message) — bool
Needs to be overridden to check if the incoming message is from the bot itself.

Return type bool

Parameters msg (Message) — The incoming message.

Returns True if the message is coming from the bot.
mode

prefix_groupchat_reply (message: errbot.backends.base.Message, identifier: er-

rbot.backends.base.ldentifier)
Patches message with the conventional prefix to ping the specific contact For example: @ gbin, you forgot

the milk !

query_room (room: str) — errbot.backends.base.Room
Query a room for information.

Return type Room
Parameters room (str)— The room to query for.
Returns An instance of Room.

reset_reconnection_ count () — None
Reset the reconnection count. Back-ends should call this after successfully connecting.

rooms
Return a list of rooms the bot is currently in.

Returns A list of Room instances.

send_message (msg: errbot.backends.base.Message) — None
Should be overridden by backends with a super().send_message() call.

serve_ forever () — None
Connect the back-end to the server and serve forever.

Back-ends MAY choose to re-implement this method, in which case they are responsible for implementing
reconnection logic themselves.

Back-ends SHOULD trigger connect_callback () and disconnect_callback () themselves
after connection/disconnection.

64 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

serve_once () — None
Connect the back-end to the server and serve a connection once (meaning until disconnected for any
reason).

Back-ends MAY choose not to implement this method, IF they implement a custom serve_forever ().

This function SHOULD raise an exception or return a value that evaluates to False in order to signal
something went wrong. A return value that evaluates to True will signal the bot that serving is done and a
shut-down is requested.

class errbot.backends.base.Card (body: str = ”, frm: errbot.backends.base.ldentifier = None,
to: errbot.backends.base.ldentifier = None, parent: er-
rbot.backends.base.Message = None, summary: str = None, ti-
tle: str =", link: str = None, image: str = None, thumbnail: str

= None, color: str = None, fields: Tuple[Tuple[str, str]] = ())
Bases: errbot.backends.base.Message

Card is a special type of preformatted message. If it matches with a backend similar concept like on Slack or
Hipchat it will be rendered natively, otherwise it will be sent as a regular message formatted with the card.md

template.

__dinit__ (body: str =7, frm: errbot.backends.base.Identifier = None, to: er-
rbot.backends.base.ldentifier = None, parent: errbot.backends.base.Message = None,
summary: str = None, title: str = 7, link: str = None, image: str = None, thumbnail: str =

None, color: str = None, fields: Tuple[Tuple[str, str]] = ())
Creates a Card. :type color: str :type thumbnail: str :type image: str :type link: str :type title:

str :type summary: str :type parent: Message :type to: Identifier :type frm: Identifier
:type body: str :param body: main text of the card in markdown. :param frm: the card is sent from this
identifier. :param to: the card is sent to this identifier (Room, RoomOccupant, Person...). :param parent:
the parent message this card replies to. (threads the message if the backend supports it). :param summary:
(optional) One liner summary of the card, possibly collapsed to it. :param title: (optional) Title possibly
linking. :param link: (optional) url the title link is pointing to. :param image: (optional) link to the main
image of the card. :param thumbnail: (optional) link to an icon / thumbnail. :param color: (optional)
background color or color indicator. :param fields: (optional) a tuple of (key, value) pairs.

color
fields
image

link
summary
text_color
thumbnail
title

class errbot.backends.base.Identifier
Bases: abc.ABC

This is just use for type hinting representing the Identifier contract, NEVER TRY TO SUBCLASS IT OUTSIDE
OF A BACKEND, it is just here to show you what you can expect from an Identifier. To get an instance of a
real identifier, always use the properties from Message (to, from) or self.build_identifier

to make an identifier from a String.

The semantics is anything you can talk to: Person, Room, RoomOccupant etc.

8.1. errbot package 65

Err Documentation, Release 6.1.1

class errbot.backends.base.Message (body: str = 7, frm: errbot.backends.base.ldentifier =
None, to: errbot.backends.base.ldentifier = None, par-
ent: Optional[errbot.backends.base.Message] = None, de-
layed: bool = False, partial: bool = False, extras: Map-
ping[KT, VT_co] = None, flow=None)
Bases: object

A chat message.
This class represents chat messages that are sent or received by the bot.

”»

__init__ (body: str = , frm: errbot.backends.base.ldentifier = None, to: er-
rbot.backends.base.ldentifier = None, parent: Optional[errbot.backends.base.Message] =
None, delayed: bool = False, partial: bool = False, extras: Mapping[KT, VT _co] = None,
flow=None)

Parameters
* body (str)— The markdown body of the message.
* extras — Extra data attached by a backend
e flow — The flow in which this message has been triggered.

* parent — The parent message of this message in a thread. (Not supported by all back-
ends)

* partial (bool) — Indicates whether the message was obtained by breaking down the
message to fit the MESSAGE_SIZE_LIMIT.

body
Get the plaintext body of the message.

Returns The body as a string.
clone ()
delayed
extras

flow
Get the conversation flow for this message.

Returns A Flow

frm
Get the sender of the message.

Returns An Identifier identifying the sender.
is_direct
is_group
is_threaded
parent
partial

to
Get the recipient of the message.

Returns A backend specific identifier representing the recipient.

66 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

class errbot.backends.base.Person
Bases: errbot.backends.base.Identifier

This is just use for type hinting representing the Identifier contract, NEVER TRY TO SUBCLASS IT OUTSIDE
OF A BACKEND, it is just here to show you what you can expect from an Identifier. To get an instance of a
real identifier, always use the properties from Message (to, from) or self.build_identifier

to make an identifier from a String.
aclattr
Returns returns the unique identifier that will be used for ACL matches.
client

Returns a backend specific unique identifier representing the device or client the person is using
to talk.

fullname
Some backends have the full name of a user.

Returns the fullname of this user if available.
nick

Returns a backend specific nick returning the nickname of this person if available.
person

Returns a backend specific unique identifier representing the person you are talking to.

class errbot.backends.base.Presence (identifier: errbot.backends.base.ldentifier, status: str =

None, message: str = None)
Bases: object

This class represents a presence change for a user or a user in a chatroom.
Instances of this class are passed to callback_presence () when the presence of people changes.

__init__ (identifier: errbot.backends.base.ldentifier, status: str = None, message: str = None)
Initialize self. See help(type(self)) for accurate signature.

identifier
Identifier for whom its status changed. It can be a RoomOccupant or a Person. :return: the person or
roomQOccupant

message
Returns a human readable message associated with the status if any. like : “BRB, washing the dishes” It
can be None if it is only a general status update (see get_status)

status
Returns the status of the presence change. It can be one of the constants ONLINE, OFFLINE, AWAY,
DND, but can also be custom statuses depending on backends. It can be None if it is just an update of the
status message (see get_message)

class errbot.backends.base.Room
Bases: errbot.backends.base.Identifier

This class represents a Multi-User Chatroom.

create () — None
Create the room.

Calling this on an already existing room is a no-op.

8.1. errbot package 67

Err Documentation, Release 6.1.1

destroy () — None
Destroy the room.

Calling this on a non-existing room is a no-op.

exists
Boolean indicating whether this room already exists or not.

Getter Returns True if the room exists, False otherwise.

invite (*args) — None
Invite one or more people into the room.

*argsargs One or more identifiers to invite into the room.

join (username: str = None, password: str = None) — None
Join the room.

If the room does not exist yet, this will automatically call create () on it first.
joined
Boolean indicating whether this room has already been joined.

Getter Returns True if the room has been joined, False otherwise.

leave (reason: str = None) — None
Leave the room.

Parameters reason (str)— An optional string explaining the reason for leaving the room.

occupants
The room’s occupants.

Getter Returns a list of occupant identities.
Raises MUCNotJoinedError if the room has not yet been joined.

topic
The room topic.

Getter Returns the topic (a string) if one is set, None if no topic has been set at all.

Note: Back-ends may return an empty string rather than None when no topic has been set
as a network may not differentiate between no topic and an empty topic.

Raises MUCNotJoinedError if the room has not yet been joined.

exception errbot.backends.base.RoomDoesNotExistError
Bases: errbot.backends.base.RoomError

Exception that is raised when performing an operation on a room that doesn’t exist

exception errbot.backends.base.RoomError
Bases: Exception

General exception class for MUC-related errors

exception errbot.backends.base.RoomNotJoinedError
Bases: errbot .backends.base.RoomError

Exception raised when performing MUC operations that require the bot to have joined the room

class errbot.backends.base.RoomOccupant
Bases: errbot.backends.base.Identifier

68 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

room
Some backends have the full name of a user.

Returns the fullname of this user if available.

class errbot.backends.base.Stream (identifier: errbot.backends.base.ldentifier, fsource: Bina-
rylO, name: str = None, size: int = None, stream_type: str
= None)
Bases: _io.BufferedReader
This class represents a stream request.
Instances of this class are passed to callback_stream () when an incoming stream is requested.

__init__ (identifier: errbot.backends.base.ldentifier, fsource: BinarylO, name: str = None, size: int =

None, stream_type: str = None)
Initialize self. See help(type(self)) for accurate signature.

accept () — None
Signal that the stream has been accepted.

ack_data (length: int) — None
Acknowledge data has been transfered.

clone (new_fsource: BinarylO) — errbot.backends.base.Stream
Creates a clone and with an alternative stream

error (reason="unknown’) — None

An internal plugin error prevented the transfer.
identifier

The identity the stream is coming from if it is an incoming request or to if it is an outgoing request.
name

The name of the stream/file if it has one or None otherwise. !! Be carefull of injections if you are using
this name directly as a filename.

reject () — None
Signal that the stream has been rejected.

size
The expected size in bytes of the stream if it is known or None.

status
The status for this stream.

stream_type
The mimetype of the stream if it is known or None.

success () — None
The streaming finished normally.

transfered
The currently transfered size.

exception errbot.backends.base.UserDoesNotExistError
Bases: Exception

Exception that is raised when performing an operation on a user that doesn’t exist

8.1. errbot package 69

Err Documentation, Release 6.1.1

errbot.backends.hipchat module

class errbot.backends.hipchat.HipChatRoom (name, bot)
Bases: errbot.backends.base.Room

This class represents a Multi-User Chatroom.
__init_ (name, bot)
Parameters name — The name of the room

create (privacy="public’, guest_access=False)
Create the room.

Calling this on an already existing room is a no-op.
Parameters

* privacy (str)— Whether the room is available for access by other users or not. Valid
values are “public” and “private”.

* guest_access (bool) — Whether or not to enable guest access for this room.

destroy ()
Destroy the room.

Calling this on a non-existing room is a no-op.
domain

exists
Boolean indicating whether this room already exists or not.

Getter Returns True if the room exists, False otherwise.

invite (*args)
Invite one or more people into the room.

Parameters args — One or more people to invite into the room. May be the mention name
(beginning with an @) or “FirstName LastName” of the user you wish to invite.

jid
join (username=None, password=None)

Join the room.

If the room does not exist yet, this will automatically call create () on it first.
joined

Boolean indicating whether this room has already been joined or not.

Getter Returns True if the room has been joined, False otherwise.

leave (reason=None)
Leave the room.

Parameters reason — An optional string explaining the reason for leaving the room

name
The name of this room

node

notify (message, color=None, notify=False, message_format=None)
Send a notification to a room.

See the HipChat API documentation for more info.

70 Chapter 8. APl documentation

https://www.hipchat.com/docs/apiv2/method/send_room_notification

Err Documentation, Release 6.1.1

occupants
The room’s occupants.

Getter Returns a list of HipChatMUCOccupant instances.
resource

room
Return room information from the HipChat API

topic
The room topic.

Getter Returns the topic (a string) if one is set, None if no topic has been set at all.

class errbot.backends.hipchat.HipChatRoomOccupant (node=None, domain=None, re-
source=None, room=None,
hipchat_user=None,

aclattr=None)
Bases: errbot.backends.xmpp.XMPPRoomOccupant

An occupant of a Multi-User Chatroom.

This class has all the attributes that are returned by a call to https://www.hipchat.com/docs/apiv2/method/get_
all_participants with the link to self expanded.

init__ (node=None, domain=None, resource=None, room=None, hipchat_user=None,
aclattr=None)

Parameters hipchat_user — A user object as returned by https://www.hipchat.com/docs/
apiv2/method/get_all_participants with the link to self expanded.

aclattr
Returns returns the unique identifier that will be used for ACL matches.

class errbot.backends.hipchat.HipchatBackend (config)
Bases: errbot.backends.xmpp.XMPPBackend

__init__ (config)
Those arguments will be directly those put in BOT_IDENTITY

build_reply (msg, text=None, private=False, threaded=False)
Should be implemented by the backend

callback_message (msg)
Processes for commands and dispatches the message to all the plugins.

create_connection ()
mode

prefix_groupchat_reply (message, identifier)
Patches message with the conventional prefix to ping the specific contact For example: @gbin, you forgot
the milk !

query_room
Query a room for information.

Parameters room — The name (preferred) or XMPP JID of the room to query for.
Returns An instance of HipChatRoom.

room_factory
alias of HipChatRoom

8.1. errbot package 4

https://www.hipchat.com/docs/apiv2/method/get_all_participants
https://www.hipchat.com/docs/apiv2/method/get_all_participants
https://www.hipchat.com/docs/apiv2/method/get_all_participants
https://www.hipchat.com/docs/apiv2/method/get_all_participants

Err Documentation, Release 6.1.1

roomoccupant_factory
alias of HipChatRoomOccupant

rooms ()
Return a list of rooms the bot is currently in.

Returns A list of HipChatRoom instances.

send_card (card)
Sends a card, this can be overriden by the backends without a super() call.

Parameters card — the card to send.
Returns None

send_stream_request (identifier, fsource, name="file.txt’, size=None, stream_type=None)
Starts a file transfer. note, fsource used to make the stream needs to be in open/rb state

class errbot.backends.hipchat.HipchatClient (*args, **kwargs)
Bases: errbot.backends. xmpp.XMPPConnection

__init__ (*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

users
A list of all the users.

See also: https://www.hipchat.com/docs/apiv2/method/get_all_users

class errbot.backends.hipchat.HipchatExtension (*args, **kwargs)
Bases: markdown.extensions.Extension

Removes the unsupported html tags from hipchat

extendMarkdown (md, md_globals)
Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.
Keyword arguments:
* md: The Markdown instance.
* md_globals: Global variables in the markdown module namespace.

class errbot.backends.hipchat.HipchatTreeprocessor (markdown_instance=None)
Bases: markdown.treeprocessors.Treeprocessor

run (root)
Subclasses of Treeprocessor should implement a run method, which takes a root ElementTree. This
method can return another ElementTree object, and the existing root ElementTree will be replaced, or
it can modify the current tree and return None.

errbot.backends.hipchat.hipchat_html ()

errbot.backends.irc module

class errbot.backends.irc.IRCBackend (config)
Bases: errbot.core.ErrBot

__init__ (config)
Those arguments will be directly those put in BOT_IDENTITY

aclpattern = '{nick}!{user}@{host}’

72 Chapter 8. APl documentation

https://www.hipchat.com/docs/apiv2/method/get_all_users

Err Documentation, Release 6.1.1

build_identifier (txirep)

build_message (fext)
You might want to override this one depending on your backend

build_reply (msg, text=None, private=False, threaded=False)
Should be implemented by the backend

change_presence (status: str = ’online’, message: str = ”) — None
Signal a presence change for the bot. Should be overridden by backends with a super().send_message()
call.

connect ()

Connects the bot to server or returns current connection
mode

prefix_groupchat_reply (message, identifier)
Patches message with the conventional prefix to ping the specific contact For example: @gbin, you forgot
the milk !

query_room (room)
Query a room for information.

Parameters room — The channel name to query for.
Returns An instance of IRCMUCRoom.

rooms ()
Return a list of rooms the bot is currently in.

Returns A list of IRCMUCRoom instances.

send_message (msg)
This needs to be overridden by the backends with a super() call.

Parameters msg — the message to send.
Returns None
send_stream_request (identifier, fsource, name=None, size=None, stream_type=None)

serve_forever ()
Connect the back-end to the server and serve forever.

Back-ends MAY choose to re-implement this method, in which case they are responsible for implementing
reconnection logic themselves.

Back-ends SHOULD trigger connect_callback () and disconnect_callback () themselves
after connection/disconnection.

shutdown ()

class errbot.backends.irc.IRCConnection (bot, nickname, server, port=6667, ssl=False,
bind_address=None, ipv6=False, password=None,
username=None, nickserv_password=None,
private_rate=1, channel_rate=1, recon-

nect_on_kick=5, reconnect_on_disconnect=5)
Bases: irc.bot.SingleServerIRCBot

__init__ (bot, nickname, server, port=6667, ssi=False, bind_address=None, ipv6=False, pass-
word=None, username=None, nickserv_password=None, private_rate=1, channel_rate=1,

_ reconnect_on_kick=>5, reconnect_on_disconnect=>5)
Initialize self. See help(type(self)) for accurate signature.

8.1. errbot package 73

Err Documentation, Release 6.1.1

away (message="")
Extend the original implementation to support AWAY. To set an away message, set message to something.
To cancel an away message, leave message at empty string.

connect (*args, **kwargs)
Connect using the underlying connection

on_currenttopic (connection, event)
When you Join a room with a topic set this event fires up to with the topic information. If the
room that you join don’t have a topic set, nothing happens. Here is NOT the place to fire the
callback_room_topic () event for that case exist on_topic.

Parameters
* connection - Is an ‘irc.client.ServerConnection’ object

* event — Is an ‘irc.client.Event’ object The event.arguments[0] contains the room name
The event.arguments[1] contains the topic of the room.

on_dcc_connect (dcc, event)
on_dcc_disconnect (dcc, event)
on_dcecmsg (dcc, event)
on_disconnect (connection, event)

on_endofnames (connection, event)
Handler of the enfofnames IRC message/event.

The endofnames message is sent to the client when the server finish to send the list of names of the room
ocuppants. This usually happens when you join to the room. So in this case, we use this event to determine
that our bot is finally joined to the room.

Parameters
* connection - Is an ‘irc.client.ServerConnection’ object
* event —Is an ‘irc.client.Event’ object the event.arguments[0] contains the channel name

on_join (connection, event)
Handler of the join IRC message/event. Is in response of a /JOIN client message.

Parameters
* connection - Is an ‘irc.client.ServerConnection’ object
* event —Is an ‘irc.client.Event’ object the event.target contains the channel name
on_kick(_,e)

on_notopic (connection, event)
This event fires ip when there is no topic set on a room

Parameters
* connection - Is an ‘irc.client.ServerConnection’ object
* event —Is an ‘irc.client.Event’ object The event.arguments[0] contains the room name

on_part (connection, event)
Handler of the part IRC Message/event.

The part message is sent to the client as a confirmation of a /PART command sent by some-
one in the room/channel. If the event.source contains the bot nickname then we need to fire the
callback room left () eventon the bot.

74 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

Parameters
e connection - Is an ‘irc.client.ServerConnection’ object

* event —Is an ‘irc.client.Event’ object The event.source contains the nickmask of the user
that leave the room The event.target contains the channel name

on_privmsg(_,e)
on_privnotice (_,e)
on_pubmsg (_, ¢)
on_pubnotice (_,¢)

on_topic (connection, event)
On response to the /TOPIC command if the room have a topic. If the room don’t have a topic the event
fired is on_notopic :param connection: Is an ‘irc.client.ServerConnection’ object

Parameters event — Is an ‘irc.client.Event’ object The event.target contains the room name.
The event.arguments[0] contains the topic name

on_welcome (_, ¢)

static send_chunk (stream, dcc)

send_private_message ({0, line)

send_public_message (10, line)

send_stream_request (identifier, fsource, name=None, size=None, stream_type=None)

class errbot.backends.irc.IRCPerson (mask)
Bases: errbot.backends.base.Person

__init__ (mask)
Initialize self. See help(type(self)) for accurate signature.

aclattr
Returns returns the unique identifier that will be used for ACL matches.
client

Returns a backend specific unique identifier representing the device or client the person is using
to talk.

fullname
Some backends have the full name of a user.

Returns the fullname of this user if available.

host
nick

Returns a backend specific nick returning the nickname of this person if available.
person

Returns a backend specific nick returning the nickname of this person if available.
user

class errbot.backends.irc.IRCRoom (room, bot)
Bases: errbot.backends.base.Room

Represent the specifics of a IRC Room/Channel.

8.1. errbot package 75

Err Documentation, Release 6.1.1

This lifecycle of this object is:
* Created in IRCConnection.on_join
* The joined status change in IRCConnection on_join/on_part
¢ Deleted/destroyed in IRCConnection.on_disconnect

__init__ (room, bot)
Initialize self. See help(type(self)) for accurate signature.

cb_set_topic (current_topic)
Store the current topic for this room.

This method is called by the IRC backend when a currenttopic, topic or notopic IRC event is received to
store the topic set for this channel.

This function is not meant to be executed by regular plugins. To get or set

create ()
Not supported on this back-end. Will join the room to ensure it exists, instead.

destroy ()
Not supported on IRC, will raise RoomError.

exists
Boolean indicating whether this room already exists or not.

Getter Returns True if the room exists, False otherwise.

invite (*args)
Invite one or more people into the room.

*argsargs One or more nicks to invite into the room.

join (username=None, password=None)
Join the room.

If the room does not exist yet, this will automatically call create () on it first.
joined
Boolean indicating whether this room has already been joined.

Getter Returns True if the room has been joined, False otherwise.

leave (reason=None)
Leave the room.

Parameters reason — An optional string explaining the reason for leaving the room

occupants
The room’s occupants.

Getter Returns a list of occupants. :raises: MUCNotJoinedError if the room has not yet
been joined.

topic
The room topic.

Getter Returns the topic (a string) if one is set, None if no topic has been set at all.

class errbot.backends.irc.IRCRoomOccupant (mask, room)
Bases: errbot.backends.irc.IRCPerson, errbot.backends.base.RoomOccupant

__init_ (mask, room)
Initialize self. See help(type(self)) for accurate signature.

76 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

room
Some backends have the full name of a user.

Returns the fullname of this user if available.

errbot.backends.irc.irc_md ()
This makes a converter from markdown to mirc color format.

errbot.backends.null module
errbot.backends.slack module
errbot.backends.telegram_messenger module

exception errbot.backends.telegram messenger.RoomsNotSupportedError (message=None)
Bases: errbot .backends.base.RoomError

__init__ (message=None)
Initialize self. See help(type(self)) for accurate signature.

class errbot.backends.telegram_messenger.TelegramBackend (config)
Bases: errbot.core.ErrBot

__init__ (config)
Those arguments will be directly those put in BOT_IDENTITY

build_identifier (#xtrep)
Convert a textual representation into a TelegramPerson or TelegramRoom.

build_reply (msg, text=None, private=False, threaded=False)
Should be implemented by the backend

change_presence (status: str = ’online’, message: str = ”) — None
Signal a presence change for the bot. Should be overridden by backends with a super().send_message()
call.

mode

prefix_groupchat_reply (message, identifier)
Patches message with the conventional prefix to ping the specific contact For example: @ gbin, you forgot
the milk !

query_room (room)
Not supported on Telegram.

Raises RoomsNotSupportedError

rooms ()
Not supported on Telegram.

Raises RoomsNotSupportedError

send_message (msg)
This needs to be overridden by the backends with a super() call.

Parameters msg — the message to send.
Returns None

send_stream_request (identifier, fsource, name="file’, size=None, stream_type=None)
Starts a file transfer.

8.1. errbot package 77

Err Documentation, Release 6.1.1

Parameters

* identifier — TelegramPerson or TelegramMUCOccupant Identifier of the Person or
Room to send the stream to.

* fsource - str, dict or binary data File URL or binary content from a local file. Optionally
a dict with binary content plus metadata can be given. See stream_type for more details.

* name (str) — str, optional Name of the file. Not sure if this works always.

* size - str, optional Size of the file obtained with os.path.getsize. This is only used for
debug logging purposes.

* stream_type — str, optional Type of the stream. Choices: ‘document’, ‘photo’, ‘audio’,
‘video’, ‘sticker’, ‘location’.

If ‘video’, a dict is optional as {‘content’: fsource, ‘duration’: str}. If ‘voice’, a dict is
optional as { ‘content’: fsource, ‘duration’: str}. If ‘audio’, a dict is optional as { ‘content’:
fsource, ‘duration’: str, ‘performer’: str, ‘title’: str}.

For ‘location’ a dict is mandatory as { ‘latitude’: str, ‘longitude’: str}. For ‘venue’: TODO
see: https://core.telegram.org/bots/api#sendvenue

Return stream str or Stream If fsource is str will return str, else return Stream.

serve_once ()
Connect the back-end to the server and serve a connection once (meaning until disconnected for any
reason).

Back-ends MAY choose not to implement this method, IF they implement a custom serve_forever ().

This function SHOULD raise an exception or return a value that evaluates to False in order to signal
something went wrong. A return value that evaluates to True will signal the bot that serving is done and a
shut-down is requested.

class errbot.backends.telegram_messenger.TelegramBotFilter
Bases: object

This is a filter for the logging library that filters the “No new updates found.” log message generated by tele-
gram.bot.

This is an INFO-level log message that gets logged for every getUpdates() call where there are no new messages,
S0 is way too verbose.

static filter (record)

class errbot.backends.telegram_messenger.TelegramIdentifier (id)
Bases: errbot.backends.base.Identifier

__init__ (id)
Initialize self. See help(type(self)) for accurate signature.

aclattr
id

class errbot.backends.telegram_messenger.TelegramMUCOccupant (id, room,
first_name=None,
last_name=None,

username=None)
Bases: errbot.backends.telegram _messenger.TelegramPerson, errbot.backends.

base.RoomOccupant

This class represents a person inside a MUC.

78 Chapter 8. APl documentation

https://core.telegram.org/bots/api#sendvenue

Err Documentation, Release 6.1.1

__init__ (id, room, first_name=None, last_name=None, username=None)
Initialize self. See help(type(self)) for accurate signature.

room
Some backends have the full name of a user.

Returns the fullname of this user if available.

username
class errbot.backends.telegram_messenger.TelegramPerson (id, first_name=None,
last name=None, user-
name=None)
Bases: errbot.backends.telegram _messenger.TelegramIdentifier, errbot.

backends.base.Person

__init__ (id, first_name=None, last_name=None, username=None)
Initialize self. See help(type(self)) for accurate signature.

client

Returns a backend specific unique identifier representing the device or client the person is using
to talk.

first name

fullname
Some backends have the full name of a user.

Returns the fullname of this user if available.
id
last_name
nick
person

username

class errbot.backends.telegram_messenger.TelegramRoom (id, title=None)

Bases: errbot.backends.telegram _messenger.TelegramIdentifier, errbot.
backends.base.Room

__init__ (id, title=None)
Initialize self. See help(type(self)) for accurate signature.

create ()
Create the room.

Calling this on an already existing room is a no-op.

destroy ()
Destroy the room.

Calling this on a non-existing room is a no-op.

exists
Boolean indicating whether this room already exists or not.

Getter Returns True if the room exists, False otherwise.
id
invite (*args)
Invite one or more people into the room.

8.1.

errbot package 79

Err Documentation, Release 6.1.1

*argsargs One or more identifiers to invite into the room.

join (username: str = None, password: str = None)
Join the room.

If the room does not exist yet, this will automatically call create () on it first.
joined
Boolean indicating whether this room has already been joined.

Getter Returns True if the room has been joined, False otherwise.

leave (reason: str = None)
Leave the room.

Parameters reason (str)— An optional string explaining the reason for leaving the room.

occupants
The room’s occupants.

Getter Returns a list of occupant identities.
Raises MUCNotJoinedError if the room has not yet been joined.

title
Return the groupchat title (only applies to groupchats)

topic
The room topic.

Getter Returns the topic (a string) if one is set, None if no topic has been set at all.

Note: Back-ends may return an empty string rather than None when no topic has been set
as a network may not differentiate between no topic and an empty topic.

Raises MUCNotJoinedError if the room has not yet been joined.

errbot.backends.test module

errbot.backends.text module

class errbot.backends.text.TextBackend (config)

Bases: errbot.core.ErrBot

__init__ (config)
Those arguments will be directly those put in BOT_IDENTITY

add_reaction (msg: errbot.backends.base.Message, reaction: str) — None
build_identifier (text_representation)

build_reply (msg, text=None, private=False, threaded=False)
Should be implemented by the backend

change_presence (status: str = ’online’, message: str = ”) — None
Signal a presence change for the bot. Should be overridden by backends with a super().send_message()
call.

mode

80

Chapter 8. APl documentation

Err Documentation, Release 6.1.1

prefix_groupchat_reply (message, identifier)
Patches message with the conventional prefix to ping the specific contact For example: @ gbin, you forgot
the milk !

query_room (room)
Query a room for information.

Parameters room — The room to query for.
Returns An instance of Room.
readline_support ()
remove_reaction (msg: errbot.backends.base.Message, reaction: str) — None

rooms
Return a list of rooms the bot is currently in.

Returns A list of Room instances.

send_message (msg)
This needs to be overridden by the backends with a super() call.

Parameters msg — the message to send.
Returns None

serve_forever ()
Connect the back-end to the server and serve forever.

Back-ends MAY choose to re-implement this method, in which case they are responsible for implementing
reconnection logic themselves.

Back-ends SHOULD trigger connect_callback () and disconnect_callback () themselves
after connection/disconnection.

class errbot.backends.text.TextOccupant (person, room)
Bases: errbot.backends.text.TextPerson, errbot.backends.base.RoomOccupant

__init__ (person, room)
Initialize self. See help(type(self)) for accurate signature.

room
Some backends have the full name of a user.

Returns the fullname of this user if available.

class errbot.backends.text.TextPerson (person, client=None, nick=None, fullname=None)
Bases: errbot.backends.base.Person

Simple Person implementation which represents users as simple text strings.

__init__ (person, client=None, nick=None, fullname=None)
Initialize self. See help(type(self)) for accurate signature.

aclattr
Returns returns the unique identifier that will be used for ACL matches.
client

Returns a backend specific unique identifier representing the device or client the person is using
to talk.

fullname
Some backends have the full name of a user.

8.1. errbot package 81

Err Documentation, Release 6.1.1

Returns the fullname of this user if available.
nick

Returns a backend specific nick returning the nickname of this person if available.
person

Returns a backend specific unique identifier representing the person you are talking to.

class errbot.backends.text.TextRoom (name, bot)
Bases: errbot.backends.base.Room

__init__ (name, bot)
Initialize self. See help(type(self)) for accurate signature.

create ()
Create the room.

Calling this on an already existing room is a no-op.

destroy ()
Destroy the room.

Calling this on a non-existing room is a no-op.

exists
Boolean indicating whether this room already exists or not.

Getter Returns True if the room exists, False otherwise.

invite (*args)
Invite one or more people into the room.

*argsargs One or more identifiers to invite into the room.

join (username=None, password=None)
Join the room.

If the room does not exist yet, this will automatically call create () on it first.
joined
Boolean indicating whether this room has already been joined.

Getter Returns True if the room has been joined, False otherwise.

leave (reason=None)
Leave the room.

Parameters reason — An optional string explaining the reason for leaving the room.

occupants
The room’s occupants.

Getter Returns a list of occupant identities.
Raises MUCNotJoinedError if the room has not yet been joined.

topic
The room topic.

Getter Returns the topic (a string) if one is set, None if no topic has been set at all.

Note: Back-ends may return an empty string rather than None when no topic has been set

as a network may not differentiate between no topic and an empty topic.

82 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

Raises MUCNotJoinedError if the room has not yet been joined.

errbot .backends.text .borderless_ansi ()
This makes a converter from markdown to ansi (console) format. It can be called like this: from errbot.rendering
import ansi md_converter = ansi() # you need to cache the converter

ansi_txt = md_converter.convert(md_txt)

errbot.backends.xmpp module

class errbot.backends.xmpp .XMPPBackend (config)
Bases: errbot.core.ErrBot

__init__ (config)
Those arguments will be directly those put in BOT_IDENTITY

build identifier

build_reply (msg, text=None, private=False, threaded=False)
Should be implemented by the backend

change_presence (status: str = ’online’, message: str = ”) — None
Signal a presence change for the bot. Should be overridden by backends with a super().send_message()
call.

chat_topic (event)

connected (data)
Callback for connection events

contact_offline (event)
contact_online (event)
create_connection ()

disconnected (data)
Callback for disconnection events

incoming_message (xmppmsg)
Callback for message events

mode

prefix_groupchat_reply (message, identifier)
Patches message with the conventional prefix to ping the specific contact For example: @ gbin, you forgot
the milk !

query_room (room)
Query a room for information.

Parameters room — The JID/identifier of the room to query for.
Returns An instance of XMPPMUCRoom.

room_factory
alias of XMPPRoom

roomoccupant_factory
alias of XMPPRoomOccupant

rooms ()
Return a list of rooms the bot is currently in.

8.1. errbot package 83

Err Documentation, Release 6.1.1

Returns A list of XMPPMUCRoom instances.

send_message (msg)
This needs to be overridden by the backends with a super() call.

Parameters msg — the message to send.
Returns None

serve_forever ()
Connect the back-end to the server and serve forever.

Back-ends MAY choose to re-implement this method, in which case they are responsible for implementing
reconnection logic themselves.

Back-ends SHOULD trigger connect_callback () and disconnect_callback () themselves
after connection/disconnection.

user_changed_status (event)
user_joined_chat (event)
user_left_chat (event)

class errbot.backends.xmpp.XMPPConnection (jid, password, feature=None, keepalive=None,
ca_cert=None, server=None, use_ipv6=None,
bot=None)
Bases: object

__init__ (jid, password, feature=None, keepalive=None, ca_cert=None, server=None,
use_ipv6=None, bot=None)
Initialize self. See help(type(self)) for accurate signature.

add_event_handler (name, cb)
connect ()
del_event_handler (name, cb)
disconnect ()
serve_forever ()
session_start ()

class errbot.backends.xmpp.XMPPIdentifier (node, domain, resource)
Bases: errbot.backends.base.Identifier

This class is the parent and the basic contract of all the ways the backends are identifying a person on their
system.

__init_ (node, domain, resource)
Initialize self. See help(type(self)) for accurate signature.

client
domain
fullname
nick
node
person

resource

84 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

class errbot.backends.xmpp.XMPPPerson (node, domain, resource)
Bases: errbot.backends.xmpp.XMPPIdentifier, errbot.backends.base.Person

aclattr

class errbot.backends.xmpp .XMPPRoom (room_jid, bot)
Bases: errbot.backends.xmpp.XMPPIdentifier, errbot.backends.base.Room

__init__ (room_jid, bot)
Initialize self. See help(type(self)) for accurate signature.

configure ()
Configure the room.

Currently this simply sets the default room configuration as received by the server. May be extended in the
future to set a custom room configuration instead.

create ()
Not supported on this back-end (SleekXMPP doesn’t support it). Will join the room to ensure it exists,
instead.

destroy ()
Destroy the room.

Calling this on a non-existing room is a no-op.

exists
Boolean indicating whether this room already exists or not.

Getter Returns True if the room exists, False otherwise.

invite (*args)
Invite one or more people into the room.

*argsargs One or more JID’s to invite into the room.

join (username=None, password=None)
Join the room.

If the room does not exist yet, this will automatically call create () on it first.
joined
Boolean indicating whether this room has already been joined.

Getter Returns True if the room has been joined, False otherwise.

leave (reason=None)
Leave the room.

Parameters reason — An optional string explaining the reason for leaving the room

occupants
The room’s occupants.

Getter Returns a list of MUCOccupant instances.
Raises MUCNotJoinedError if the room has not yet been joined.

topic
The room topic.

Getter Returns the topic (a string) if one is set, None if no topic has been set at all.

Raises RoomNotJoinedError if the room has not yet been joined.

8.1. errbot package 85

Err Documentation, Release 6.1.1

class errbot.backends.xmpp .XMPPRoomOccupant (node, domain, resource, room)
Bases: errbot.backends.xmpp.XMPPPerson, errbot .backends.base.RoomOccupant

__init__ (node, domain, resource, room)
Initialize self. See help(type(self)) for accurate signature.

nick
person
Returns a backend specific unique identifier representing the person you are talking to.

real_jid
The JID of the room occupant, they used to login. Will only work if the errbot is moderator in the MUC
or it is not anonymous.

room
Some backends have the full name of a user.

Returns the fullname of this user if available.

errbot .backends.xmpp.split_identifier (txtrep)

Module contents

errbot.core_plugins package

Submodules
errbot.core_plugins.acls module

class errbot.core_plugins.acls.ACLS (bot, name=None)
Bases: errbot.botplugin.BotPlugin

This plugin implements access controls for commands, allowing them to be restricted via various rules.
access_denied (msg, reason, dry_run)

acls (msg, cmd, args, dry_run)
Check command against ACL rules as defined in the bot configuration.

Parameters
* msg — The original chat message.
* cmd — The command name itself.
* args — Arguments passed to the command.
* dry_run — True when this is a dry-run.

errbot.core_plugins.acls.ciglob (fext, patterns)
Case-insensitive version of glob.

Match text against the list of patterns according to unix glob rules. Return True if a match is found, False
otherwise.

errbot.core_plugins.acls.get_acl_usr (msg)
Return the ACL attribute of the sender of the given message

86 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

errbot.core_plugins.acls.glob (text, patterns)
Match text against the list of patterns according to unix glob rules. Return True if a match is found, False
otherwise.

errbot.core_plugins.backup module

class errbot.core_plugins.backup.Backup (bot, name=None)
Bases: errbot.botplugin.BotPlugin

Backup related commands.

backup (msg, args)
Backup everything. Makes a backup script called backup.py in the data bot directory. You can restore the
backup from the command line with errbot —restore

errbot.core_plugins.chatRoom module

class errbot.core_plugins.chatRoom.ChatRoom (bot, name=None)
Bases: errbot.botplugin.BotPlugin

callback_ connect ()
Triggered when the bot has successfully connected to the chat network.

Override this method to get notified when the bot is connected.

callback_message (msg)
Triggered on every message not coming from the bot itself.

Override this method to get notified on ANY message.
Parameters message — representing the message that was received.
connected = False

deactivate ()
Triggered on plugin deactivation.

Override this method if you want to do something at tear-down phase (don’t forget to super().deactivate()).

room_create (message, args)
Create a chatroom.

Usage: room create <room>
Examples (XMPP): Iroom create example-room @chat.server.tld
Examples (IRC): !room create #example-room

room_destroy (message, args)
Destroy a chatroom.

Usage: !room destroy <room>
Examples (XMPP): !room destroy example-room @chat.server.tld
Examples (IRC): Iroom destroy #example-room

room_invite (message, args)
Invite one or more people into a chatroom.

Usage: !room invite <room> <identifier]> [<identifier2>, ..]

8.1. errbot package 87

mailto:example-room@chat.server.tld
mailto:example-room@chat.server.tld

Err Documentation, Release 6.1.1

Examples (XMPP): !room invite room @conference.server.tld bob@server.tld
Examples (IRC): !room invite #example-room bob

room_join (message, args)
Join (creating it first if needed) a chatroom.

Usage: !room join <room> [<password>]

Examples (XMPP): Iroom join example-room @chat.server.tld !room join example-room @chat.server.tld
super-secret-password

Examples (IRC): !room join #example-room !room join #example-room super-secret-password !room join
#example-room “password with spaces”

room_Jleave (message, args)
Leave a chatroom.

Usage: !room leave <room>
Examples (XMPP): Iroom leave example-room @chat.server.tld
Examples (IRC): !room leave #example-room

room_1list (message, args)
List chatrooms the bot has joined.

Usage: !room list
Examples: !room list

room_occupants (message, args)
List the occupants in a given chatroom.

Usage: room occupants <room 1> [<room 2> ..]
Examples (XMPP): !room occupants room @conference.server.tld
Examples (IRC): lroom occupants #example-room #another-example-room

room_topic (message, args)
Get or set the topic for a room.

Usage: !room topic <room> [<new topic>]

Examples (XMPP): !room topic example-room@chat.server.tld !room topic example-
room @chat.server.tld “Err rocks!”

Examples (IRC): Iroom topic #example-room !room topic #example-room “Err rocks!”

errbot.core_plugins.cnf_filter module

class errbot.core_plugins.cnf_filter.CommandNotFoundFilter (bot, name=None)
Bases: errbot.botplugin.BotPlugin

cnf_filter (msg, cmd, args, dry_run, emptycmd=False)
Check if command exists. If not, signal plugins. This plugin will be called twice: once as a command filter
and then again as a “command not found” filter. See the emptycmd parameter.

Parameters
* msg — Original chat message.

¢ cmd — Parsed command.

88 Chapter 8. APl documentation

mailto:room@conference.server.tld
mailto:bob@server.tld
mailto:example-room@chat.server.tld
mailto:example-room@chat.server.tld
mailto:example-room@chat.server.tld
mailto:room@conference.server.tld
mailto:example-room@chat.server.tld
mailto:example-room@chat.server.tld
mailto:example-room@chat.server.tld

Err Documentation, Release 6.1.1

* args — Command arguments.

* dry_run - True when this is a dry-run.

* emptycmd (bool) — False when this command has been parsed and is valid.

True if the command was not found.

errbot.core_plugins.flows module

class errbot.core_plugins.flows.Flows (bot, name=None)
Bases: errbot.botplugin.BotPlugin

Management commands related to flows / conversations.

check_user (msg, flow)
Checks to make sure that either the user started the flow, or is a bot admin

flows_kill (_, user, flow_name)
usage: flows_kill [-h] user flow_name

Admin command to kill a specific flow.
positional arguments: user flow_name
optional arguments:
-h, --help show this help message and exit

flows_1list (msg, args)
Displays the list of setup flows.

flows_show (_, args)
Shows the structure of a flow.

flows_start (msg, args)

Manually start a flow within the context of the calling user. You can prefeed the flow data with a json

payload. Example:
!flows start poll_setup {“title”:’yeah!”,’options”:[“f00”,’bar”,’baz’"] }

flows_status (msg, args)
Displays the list of started flows.

flows_stop (msg, args)
Stop flows you are in. optionally, stop a specific flow you are in.

recurse_node (response: _io.StringlO, stack, f: errbot.flow.FlowNode, flow: errbot.flow.Flow

None)

errbot.core_plugins.health module

class errbot.core_plugins.health.Health (bot, name=None)
Bases: errbot.botplugin.BotPlugin

restart (msg, args)
Restart the bot.

shutdown (msg, confirmed, kill)
usage: shutdown [-h] [kill] [-confirm]

Shutdown the bot. Useful when the things are going crazy and you don’t have access to the machine.

8.1. errbot package

89

Err Documentation, Release 6.1.1

optional arguments:

-h, --help show this help message and exit
--kill kill the bot instantly, don’t shut down gracefully
--confirm confirm you want to shut down

status (msg, args)
If T am alive I should be able to respond to this one

status_gc (_, args)
shows the garbage collection details

status_load (_, args)
shows the load status

status_plugins (_, args)
shows the plugin status

uptime (_, args)
Return the uptime of the bot

errbot.core_plugins.help module

class errbot.core_plugins.help.Help (bot, name=None)
Bases: errbot.botplugin.BotPlugin

MSG_HELP_TAIL = 'Type help <command name> to get more info about that specific command
MSG_HELP UNDEFINED COMMAND = 'That command is not defined.'

about (msg, args)
Return information about this Errbot instance and version

apropos (msg, args)
Returns a help string listing available options.

Automatically assigned to the “help” command.

help (msg, args)
Returns a help string listing available options. Automatically assigned to the “help” command.

is_git_directory (path="")

errbot.core_plugins.plugins module

class errbot.core_plugins.plugins.Plugins (bot, name=None)
Bases: errbot.botplugin.BotPlugin

formatted_plugin_list (active_only=True)
Return a formatted, plain-text list of loaded plugins.

When active_only=True, this will only return plugins which are actually active. Otherwise, it will also
include inactive (blacklisted) plugins.

plugin_activate (_, args)
activate a plugin. [calls .activate() on the plugin]

920 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

plugin_blacklist (_, args)
Blacklist a plugin so that it will not be loaded automatically during bot startup. If the plugin is currently
activated, it will deactiveate it first.

plugin_config (_, args)

configure or get the configuration / configuration template for a specific plugin ie. !plugin config Example-
Bot could return a template if it is not configured: {‘LOGIN’: ‘example @example.com’, ‘PASSWORD’:
‘password’, ‘DIRECTORY’: ‘/toto’} Copy paste, adapt so can configure the plugin : !plugin config Ex-
ampleBot { ‘LOGIN’: ‘my@email.com’, ‘PASSWORD’: ‘myrealpassword’, ‘DIRECTORY’: ‘/tmp’} It
will then reload the plugin with this config. You can at any moment retrieve the current values: !plu-
gin config ExampleBot should return : { ‘LOGIN’: ‘my@email.com’, ‘PASSWORD’: ‘myrealpassword’,
‘DIRECTORY’: ‘/tmp’ }

plugin_deactivate (_, args)
deactivate a plugin. [calls .deactivate on the plugin]

plugin_info (_, args)
Gives you a more technical information about a specific plugin.

plugin_reload (_, args)
reload a plugin: reload the code of the plugin leaving the activation status intact.

plugin_unblacklist (_, args)
Remove a plugin from the blacklist

repos (_, args)
list the current active plugin repositories

repos_install (_, args)
install a plugin repository from the given source or a known public repo (see !repos to find those). for
example from a known repo : linstall err-codebot for example a git url : git@github.com:gbin/plugin.git
or an url towards a tar.gz archive : http://www.gootz.net/plugin-latest.tar.gz

repos_search (_, args)
Searches the repo index. for example: !repos search jenkins

repos_uninstall (_, repo_name)
uninstall a plugin repository by name.

repos_update (_, args)
update the bot and/or plugins use : !repos update all to update everything or : !repos update repo_name
repo_name ... to update selectively some repos

errbot.core_plugins.textcmds module

class errbot.core_plugins.textcmds.TextModeCmds (bot, name=None)
Bases: errbot.botplugin.BotPlugin

Internal to TextBackend.

activate ()
Triggered on plugin activation.

Override this method if you want to do something at initialization phase (don’t forget to super().activate()).

asadmin (msg, _)
This puts you in a 1-1 chat with the bot.

asuser (msg, args)
This puts you in a room with the bot. You can specify a name otherwise it will default to ‘luser’.

8.1. errbot package 91

mailto:'example@example.com
mailto:'my@email.com
mailto:'my@email.com
mailto:git@github.com
http://www.gootz.net/plugin-latest.tar.gz

Err Documentation, Release 6.1.1

deactivate ()
Triggered on plugin deactivation.

Override this method if you want to do something at tear-down phase (don’t forget to super().deactivate()).

inperson (msg, _)
This puts you in a 1-1 chat with the bot.

inroom (msg, args)
This puts you in a room with the bot.

ml (msg, _)
Switch back and forth between normal mode and multiline mode. Use this if you want to test commands
spanning multiple lines. Note: in multiline, press enter twice to end and send the message.

errbot.core_plugins.utils module

class errbot.core_plugins.utils.Utils (bot, name=None)
Bases: errbot.botplugin.BotPlugin

echo (_, args)
A simple echo command. Useful for encoding tests etc ...

history (msg, args)
display the command history

log_tail (msg, args)
Display a tail of the log of n lines or 40 by default use : !log tail 10

render_test (_, args)
Tests / showcases the markdown rendering on your current backend

whoami (msg, args)
A simple command echoing the details of your identifier. Useful to debug identity problems.

errbot.core_plugins.utils.tail (f, window=20)

errbot.core_plugins.vcheck module

class errbot.core_plugins.vcheck.VersionChecker (bot, name=None)
Bases: errbot.botplugin.BotPlugin

activate ()
Triggered on plugin activation.

Override this method if you want to do something at initialization phase (don’t forget to super().activate()).
activated = False

callback_connect ()
Triggered when the bot has successfully connected to the chat network.

Override this method to get notified when the bot is connected.
connected = False

deactivate ()
Triggered on plugin deactivation.

Override this method if you want to do something at tear-down phase (don’t forget to super().deactivate()).

92 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

version_check ()

errbot.core_plugins.webserver module

class errbot.core_plugins.webserver.Webserver (*args, **kwargs)
Bases: errbot.botplugin.BotPlugin

__init__ (*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

activate ()
Triggered on plugin activation.

Override this method if you want to do something at initialization phase (don’t forget to super().activate()).

check_configuration (configuration)
By default, this method will do only a BASIC check. You need to override it if you want to do more
complex checks. It will be called before the configure callback. Note if the config_template is None, it
will never be called.

It means recusively:
1. in case of a dictionary, it will check if all the entries and from the same type are there and not more.

2. in case of an array or tuple, it will assume array members of the same type of first element of the
template (no mix typed is supported)

In case of validation error it should raise a errbot.ValidationException
Parameters configuration — the configuration to be checked.

deactivate ()
Triggered on plugin deactivation.

Override this method if you want to do something at tear-down phase (don’t forget to super().deactivate()).

echo (incoming_request)
A simple test webhook

generate_certificate (_, args)
Generate a self-signed SSL certificate for the Webserver

get_configuration_ template ()
If your plugin needs a configuration, override this method and return a configuration template.

For example a dictionary like: return { ‘LOGIN’ : ‘example @example.com’, ‘PASSWORD’ : ‘password’ }
Note: if this method returns None, the plugin won’t be configured
run_server ()
webhook_test (_, args)
Test your webhooks from within err.
The syntax is : !webhook test [relative_url] [post content]
It triggers the notification and generate also a little test report.

webstatus (msg, args)
Gives a quick status of what is mapped in the internal webserver

8.1. errbot package 93

mailto:'example@example.com

Err Documentation, Release 6.1.1

errbot.core_plugins.webserver.make_ssl_certificate (key_path, cert_path)
Generate a self-signed certificate

The generated key will be written out to key_path, with the corresponding certificate itself being written to
cert_path. :param cert_path: path where to write the certificate. :param key_path: path where to write the key.

errbot.core_plugins.wsview module

class errbot.core_plugins.wsview.WebView (func, form_param, raw)
Bases: flask.views.View

__init__ (func, form_param, raw)
Initialize self. See help(type(self)) for accurate signature.

dispatch_request (*args, **kwargs)
Subclasses have to override this method to implement the actual view function code. This method is called
with all the arguments from the URL rule.

errbot.core_plugins.wsview.reset_app ()
Zap everything here, useful for unit tests

errbot.core_plugins.wsview.route (0bj)
Check for functions to route in obj and route them.

errbot.core_plugins.wsview.strip_path ()

errbot.core_plugins.wsview.try_ decode_json (req)

Module contents

errbot.rendering package

Submodules
errbot.rendering.ansiext module

class errbot.rendering.ansiext.AnsiExtension (*args, **kwargs)
Bases: markdown.extensions.Extension

(kinda hackish) This is just a private extension to postprocess the html text to ansi text

extendMarkdown (md, md_globals)
Add the various proccesors and patterns to the Markdown Instance.

This method must be overriden by every extension.
Keyword arguments:
* md: The Markdown instance.
* md_globals: Global variables in the markdown module namespace.

class errbot.rendering.ansiext.AnsiPostprocessor (markdown_instance=None)
Bases: markdown.postprocessors.Postprocessor

Markdown generates html entities, this reputs them back to their unicode equivalent

94 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

run (fext)
Subclasses of Postprocessor should implement a run method, which takes the html document as a single
text string and returns a (possibly modified) string.

class errbot.rendering.ansiext.AnsiPreprocessor (md)
Bases: markdown.extensions.fenced_code.FencedBlockPreprocessor

run (lines)
Match and store Fenced Code Blocks in the HtmlStash.

class errbot.rendering.ansiext.BorderlessTable (chr_table)
Bases: object

__init__ (chr_table)
Initialize self. See help(type(self)) for accurate signature.

add_col ()

add header ()
begin_headers ()
end_headers ()
next_row ()
write (fext)

class errbot.rendering.ansiext.CharacterTable (fg_black, fg_red, fg_green, fg_yellow,

fg_blue, fg_magenta, fg_cyan, fg_white,
fg_default, bg_black, bg_red, bg_green,
bg_yellow, bg_blue, bg_magenta,
bg_cyan, bg_white, bg_default, fx_reset,
Sfx_bold, fx_italic, fx_underline,
Jfx_not_italic, fx_not_underline,
Jx_normal, fixed_width, end_fixed_width,
inline_code, end_inline_code)

Bases: tuple

bg black

Alias for field number 9

bg_blue
Alias for field number 13

bg_cyan
Alias for field number 15

bg_default
Alias for field number 17

bg _green
Alias for field number 11

bg_magenta
Alias for field number 14

bg_red
Alias for field number 10

bg_white
Alias for field number 16

8.1. errbot package 95

Err Documentation, Release 6.1.1

bg_yellow
Alias for field number 12

end_fixed_width
Alias for field number 26

end inline_code
Alias for field number 28

fg_black
Alias for field number 0

fg blue
Alias for field number 4

fg_cyan
Alias for field number 6

fg default
Alias for field number 8

fg_green
Alias for field number 2

fg _magenta
Alias for field number 5

fg_red
Alias for field number 1

fg_white
Alias for field number 7

fg_yellow
Alias for field number 3

fixed width
Alias for field number 25

fx_bold
Alias for field number 19

fx_italic
Alias for field number 20

fx normal
Alias for field number 24

fx not_italic
Alias for field number 22

fx not_underline
Alias for field number 23

fx reset
Alias for field number 18

fx underline
Alias for field number 21

inline_code
Alias for field number 27

96

Chapter 8. APl documentation

Err Documentation, Release 6.1.1

class errbot.rendering.ansiext .NSC(s)
Bases: object

__dinit_ (s)
Initialize self. See help(type(self)) for accurate signature.

class errbot.rendering.ansiext.Table (chr_table)
Bases: object

__init__ (chr_table)
Initialize self. See help(type(self)) for accurate signature.

add col ()

add_header ()

begin_headers ()

end_headers ()

next_row ()

write (text)
errbot.rendering.ansiext .enable_format (name, chr_table, borders=True)
errbot.rendering.ansiext .recurse (write, chr_table, element, table=None, borders=True)

errbot.rendering.ansiext.translate (element, chr_table=CharacterTable(fg_black=<ansi.colour.base.Graphic

object>, fg_red=<ansi.colour.base.Graphic ob-
ject>, fg_green=<ansi.colour.base.Graphic ob-
Ject>, fg_yellow=<ansi.colour.base.Graphic ob-
ject>, fe_blue=<ansi.colour.base.Graphic ob-
ject>, fg_magenta=<ansi.colour.base.Graphic ~ ob-
ject>, fg_cyan=<ansi.colour.base.Graphic ob-
ject>, feg_white=<ansi.colour.base.Graphic ob-
ject>, [fg_default=<ansi.colour.base.Graphic ob-
ject>, bg_black=<ansi.colour.base.Graphic ob-
ject>, bg_red=<ansi.colour.base.Graphic ob-
ject>, bg_green=<ansi.colour.base.Graphic ob-
ject>, bg_yellow=<ansi.colour.base.Graphic ob-
ject>, bg_blue=<ansi.colour.base.Graphic ob-
Ject>, bg_magenta=<ansi.colour.base.Graphic ~ ob-
ject>, bg_cyan=<ansi.colour.base.Graphic ob-
ject>, bg_white=<ansi.colour.base.Graphic ob-
ject>, bg_default=<ansi.colour.base.Graphic ob-
ject>, Jx_reset=<ansi.colour.base.Graphic ob-
Ject>, Jx_bold=<ansi.colour.base.Graphic ob-
ject>, fx_italic=<ansi.colour.base.Graphic object>,
fx_underline=<ansi.colour.base.Graphic object>,
Sfx_not_italic=<ansi.colour.base.Graphic object>,
Jx_not_underline=<ansi.colour.base.Graphic ob-
ject>, fx_normal=<ansi.colour.base.Graphic object>,
fixed_width="", end_fixed_width=", inline_code="",

end_inline_code="), borders=True)

errbot.rendering.xhtmlim module

errbot.rendering.xhtmlim.unescape (s)

8.1. errbot package 97

Err Documentation, Release 6.1.1

Module contents

class errbot.rendering.Mde2mdConverter
Bases: object

convert (mde)

errbot.rendering.ansi ()
This makes a converter from markdown to ansi (console) format. It can be called like this: from errbot.rendering
import ansi md_converter = ansi() # you need to cache the converter

ansi_txt = md_converter.convert(md_txt)

errbot.rendering.imtext ()
This makes a converter from markdown to imtext (unicode) format. imtest is the format like gtalk, slack or
skype with simple _ or * markup.

It can be called like this: from errbot.rendering import imtext md_converter = imtext() # you need to cache the
converter

im_text = md_converter.convert(md_txt)

errbot.rendering.md ()
This makes a converter from markdown-extra to markdown, stripping the attributes from extra.

errbot.rendering.md_escape (#xt)
Call this if you want to be sure your text won’t be interpreted as markdown :param txt: bare text to escape.

errbot.rendering.text ()
This makes a converter from markdown to text (unicode) format. It can be called like this: from errbot.rendering
import text md_converter = text() # you need to cache the converter

pure_text = md_converter.convert(md_txt)

errbot.rendering.xhtml ()
This makes a converter from markdown to xhtml format. It can be called like this: from errbot.rendering import
xhtml md_converter = xhtml() # you need to cache the converter

html = md_converter.convert(md_txt)

errbot.storage package

Submodules
errbot.storage.base module

class errbot.storage.base.StorageBase
Bases: object

Contract to implemement a storage.

close () — None
Sync and close the storage. The caller of close will protect against close on non open and double close.

get (key: str) — Any
Get the value stored for key. Raises KeyError if the key doesn’t exist. The caller of get will protect against
get on non open.

Parameters key (str) — the key

Returns the value

98 Chapter 8. APl documentation

Err Documentation, Release 6.1.1

keys () — Iterable[str]

Returns an iterator on all the entries
len() —int

Returns the number of keys set.

remove (key: str) — None
Remove key. Raises KeyError if the key doesn’t exist. The caller of get will protect against get on non
open.

Parameters key (str) — the key

set (key: str, value: Any) — None
Atomically set the key to the given value. The caller of set will protect against set on non open.

Parameters
* key (str) — string as key
* value - pickalable python object

class errbot.storage.base.StoragePluginBase (bot_config)
Bases: object

Base to implement a storage plugin. This is a factory for the namespaces.

__init__ (bot_config)
Initialize self. See help(type(self)) for accurate signature.

open (namespace: str) — errbot.storage.base.StorageBase
Open the storage with the given namespace (core, or plugin name) and config. The caller of open will
protect against double opens.

Return type StorageBase
Parameters namespace (str) —a namespace to isolate the plugin storages.

Returns

errbot.storage.memory module

class errbot.storage.memory.MemoryStorage (namespace)
Bases: errbot.storage.base.StorageBase

__init__ (namespace)
Initialize self. See help(type(self)) for accurate signature.

close () — None
Sync and close the storage. The caller of close will protect against close on non open and double close.

get (key: str) — Any
Get the value stored for key. Raises KeyError if the key doesn’t exist. The caller of get will protect against
get on non open.

Parameters key (str) — the key
Returns the value

keys ()
Returns an iterator on all the entries

len ()

8.1. errbot package 99

Err Documentation, Release 6.1.1

Returns the number of keys set.

remove (key: str)
Remove key. Raises KeyError if the key doesn’t exist. The caller of get will protect against get on non
open.

Parameters key (str) — the key

set (key: str, value: Any) — None
Atomically set the key to the given value. The caller of set will protect against set on non open.

Parameters
* key (str) — string as key
* value - pickalable python object

class errbot.storage.memory.MemoryStoragePlugin (bot_config)
Bases: errbot.storage.base.StoragePluginBase

open (namespace: str) — errbot.storage.base.StorageBase
Open the storage with the given namespace (core, or plugin name) and config. The caller of open will
protect against double opens.

Return type StorageBase
Parameters namespace (str)— a namespace to isolate the plugin storages.

Returns

errbot.storage.shelf module

class errbot.storage.shelf.ShelfStorage (path)
Bases: errbot.storage.base.StorageBase

__init__ (path)
Initialize self. See help(type(self)) for accurate signature.

close () — None
Sync and close the storage. The caller of close will protect against close on non open and double close.

get (key: str) — Any
Get the value stored for key. Raises KeyError if the key doesn’t exist. The caller of get will protect against
get on non open.

Parameters key (str) — the key
Returns the value
keys ()
Returns an iterator on all the entries
len ()
Returns the number of keys set.

remove (key: str)
Remove key. Raises KeyError if the key doesn’t exist. The caller of get will protect against get on non
open.

Parameters key (str) — the key

100 Chapter 8. API documentation

Err Documentation, Release 6.1.1

set (key: str, value: Any) — None
Atomically set the key to the given value. The caller of set will protect against set on non open.

Parameters
* key (str) — string as key
* value - pickalable python object

class errbot.storage.shelf.ShelfStoragePlugin (bot_config)
Bases: errbot.storage.base.StoragePluginBase

__init__ (bot_config)
Initialize self. See help(type(self)) for accurate signature.

open (namespace: str) — errbot.storage.base.StorageBase
Open the storage with the given namespace (core, or plugin name) and config. The caller of open will

protect against double opens.
Return type StorageBase

Parameters namespace (str)—a namespace to isolate the plugin storages.

Returns

Module contents

exception errbot.storage.StoreAlreadyOpenError
Bases: errbot.storage.StoreException

exception errbot.storage.StoreException
Bases: Exception

class errbot.storage.StoreMixin
Bases: collections.abc.MutableMapping

This class handle the basic needs of bot plugins and core like loading, unloading and creating a storage

dinit ()
Initialize self. See help(type(self)) for accurate signature.

close_storage ()

keys () — a set-like object providing a view on D’s keys
mutable (key, default=None)

open_storage (storage_plugin, namespace)

exception errbot.storage.StoreNotOpenError
Bases: errbot.storage.StoreException

8.1.2 Submodules

8.1. errbot package 101

Err Documentation, Release 6.1.1

errbot.backend_plugin_manager module

class errbot.backend_plugin_manager.BackendPluginManager (bot_config, base_module:

Str, plugin_name:
Sty base_class:
Type[CT_co],
base_search_dir, ex-
tra_search_dirs=())

Bases: object

This is a one shot plugin manager for Backends and Storage plugins.

__init__ (bot_config, base_module: str, plugin_name: str, base_class: Type[CT_co], base_search_dir,
extra_search_dirs=())
Initialize self. See help(type(self)) for accurate signature.

load_plugin () — Any

exception errbot.backend plugin_manager.PluginNotFoundException
Bases: Exception

errbot.backend_plugin_manager.enumerate_backend_plugins (all_plugins_paths)

errbot.bootstrap module
errbot .bootstrap.bootstrap (bot_class, logger, config, restore=None)
Main starting point of Errbot.
Parameters
* bot_class — The backend class inheriting from Errbot you want to start.
* logger — The logger you want to use.
* config — The config.py module.
* restore — Start Errbot in restore mode (from a backup).
errbot.bootstrap.bot_config defaults (config)

errbot.bootstrap.get_storage_plugin (config)
Find and load the storage plugin :param config: the bot configuration. :return: the storage plugin

errbot.bootstrap.restore_bot_from_backup (backup_filename, *, bot, log)
Restores the given bot by executing the ‘backup’ script.

The backup file is a python script which manually execute a series of commands on the bot to restore it to its
previous state.

Parameters
* backup_filename — the full path to the backup script.
* bot — the bot instance to restore
* log - logger to use during the restoration process

errbot.bootstrap.setup_bot (backend _name: str, logger, config, restore=None) — er-
rbot.core.ErrBot

102 Chapter 8. API documentation

Err Documentation, Release 6.1.1

errbot.botplugin module
class errbot.botplugin.ArgParserBase
Bases: object

The ArgSplitterBase class defines the API which is used for argument splitting (used by the split_args_with
parameter on botcmd ()).

parse_args (args. str)
This method takes a string of un-split arguments and parses it, returning a list that is the result of splitting.

If splitting fails for any reason it should return an exception of some kind.
Parameters args (str) — string to parse

class errbot.botplugin.BotPlugin (bot, name=None)
Bases: errbot.botplugin.BotPluginBase

activate () — None
Triggered on plugin activation.

Override this method if you want to do something at initialization phase (don’t forget to super().activate()).

build_identifier (fxtrep: str) — errbot.backends.base.Identifier
Transform a textual representation of a user identifier to the correct Identifier object you can set in Mes-
sage.to and Message.frm.

Return type Tdentifier

Parameters txtrep (str) — the textual representation of the identifier (it is backend depen-
dent).

Returns a user identifier.

callback_botmessage (message: errbot.backends.base.Message)
Triggered on every message coming from the bot itself.

Override this method to get notified on all messages coming from the bot itself (including those from other
plugins).

Parameters message (Message) — An instance of Message representing the message that
was received.

callback connect () — None
Triggered when the bot has successfully connected to the chat network.

Override this method to get notified when the bot is connected.

callback_mention (message: errbot.backends.base.Message, =~ mentioned_people: Se-

quence[errbot.backends.base.Identifier]) — None
Triggered if there are mentioned people in message.

Override this method to get notified when someone was mentioned in message. [Note: This might not be
implemented by all backends.]

Parameters
* message (Message) — representing the message that was received.
* mentioned_people — all mentioned people in this message.

callback_message (message: errbot.backends.base.Message) — None
Triggered on every message not coming from the bot itself.

Override this method to get notified on ANY message.

8.1. errbot package 103

Err Documentation, Release 6.1.1

Parameters message (Message) — representing the message that was received.

callback_presence (presence: errbot.backends.base.Presence) — None
Triggered on every presence change.

Parameters presence (Presence)— An instance of Presence representing the new pres-
ence state that was received.

callback_room_joined (room: errbot.backends.base.Room)
Triggered when the bot has joined a MUC.

Parameters room (Room) — An instance of MUCRoom representing the room that was joined.

callback_room_left (room: errbot.backends.base.Room)
Triggered when the bot has left a MUC.

Parameters room (Room) — An instance of MUCRoom representing the room that was left.

callback_room topic (room: errbot.backends.base.Room)
Triggered when the topic in a MUC changes.

Parameters room (Room) — An instance of MUCRoom representing the room for which the
topic changed.

callback_stream (stream: errbot.backends.base.Stream) — None
Triggered asynchronously (in a different thread context) on every incoming stream request or file transfert
requests. You can block this call until you are done with the stream. To signal that you accept / reject the
file, simply call stream.accept() or stream.reject() and return.

Parameters stream (St ream)— the incoming stream request.
change_presence (status: str = ’online’, message: str = ”) — None

Changes the presence/status of the bot.

Parameters
e status (str) - One of the constant defined in base.py : ONLINE, OFFLINE, DND,.. ..
* message (str)— Additional message
Returns None
check_configuration (configuration: Mapping[KT, VI _co]) — None
By default, this method will do only a BASIC check. You need to override it if you want to do more

complex checks. It will be called before the configure callback. Note if the config_template is None, it
will never be called.

It means recusively:
1. in case of a dictionary, it will check if all the entries and from the same type are there and not more.

2. in case of an array or tuple, it will assume array members of the same type of first element of the
template (no mix typed is supported)

In case of validation error it should raise a errbot.ValidationException
Parameters configuration — the configuration to be checked.

configure (configuration: Mapping[KT, VT_co]) — None
By default, it will just store the current configuration in the self.config field of your plugin. If this plugin
has no configuration yet, the framework will call this function anyway with None.

This method will be called before activation so don’t expect to be activated at that point.

104 Chapter 8. API documentation

Err Documentation, Release 6.1.1

Parameters configuration — injected configuration for the plugin.

deactivate () — None
Triggered on plugin deactivation.

Override this method if you want to do something at tear-down phase (don’t forget to super().deactivate()).

get_configuration_template () — Mapping[KT, VT_co]
If your plugin needs a configuration, override this method and return a configuration template.

For example a dictionary like: return { ‘LOGIN’ : ‘example @example.com’, ‘PASSWORD’ : ‘password’ }
Note: if this method returns None, the plugin won’t be configured

query_room (room: str) — errbot.backends.base.Room
Query a room for information.

Return type Room

Parameters room (str)— The JID/identifier of the room to query for.
Returns An instance of MUCRoom.

Raises RoomDoesNotExistError if the room doesn’t exist.

rooms () — Sequence[errbot.backends.base.Room]
The list of rooms the bot is currently in.

send (identifier: errbot.backends.base.ldentifier, text: str, in_reply_to: errbot.backends.base.Message =

None, groupchat_nick_reply: bool = False) — None
Send a message to a room or a user.

Parameters

e groupchat_nick_reply (bool) — if True the message will mention the user in the
chatroom.

* in reply to (Message) — the original message this message is a reply to (optional).
In some backends it will start a thread.

¢ text (str)- markdown formatted text to send to the user.

e identifier (Identifier)— An ldentifier representing the user or room to message.
Identifiers may be created with build identifier().

”»

send_card (body: str = 7, to: errbot.backends.base.ldentifier = None, in_reply_to: er-
rbot.backends.base.Message = None, summary: str = None, title: str = ", link: str = None,
image: str = None, thumbnail: str = None, color: str = ’green’, fields: Tuple[Tuple[str,

str],...] =()) — None
Sends a card.

A Card is a special type of preformatted message. If it matches with a backend similar concept like on
Slack or Hipchat it will be rendered natively, otherwise it will be sent as a regular formatted message.

Parameters
¢ body (str)— main text of the card in markdown.
* to(Identifier)—thecardis sent to this identifier (Room, RoomOccupant, Person...).
* in_reply_ to (Message) — the original message this message is a reply to (optional).
* summary (str)— (optional) One liner summary of the card, possibly collapsed to it.
e title (str)— (optional) Title possibly linking.

e link (str) — (optional) url the title link is pointing to.

8.1.

errbot package 105

mailto:'example@example.com

Err Documentation, Release 6.1.1

* image (str) — (optional) link to the main image of the card.

* thumbnail (str)— (optional) link to an icon / thumbnail.

* color (str) — (optional) background color or color indicator.
* fields — (optional) a tuple of (key, value) pairs.

send_stream_request (user: errbot.backends.base.ldentifier, fsource: io.IOBase, name: str =

None, size: int = None, stream_type: str = None)
Sends asynchronously a stream/file to a user.

Parameters
* user (Identifier)—is the identifier of the person you want to send it to.
» fsource (IOBase) —is a file object you want to send.
* name (str) —is an optional filename for it.
* size (int) —is optional and is the espected size for it.
e stream_type (str) —is optional for the mime_type of the content.

It will return a Stream object on which you can monitor the progress of it.

send_templated (identifier: errbot.backends.base.ldentifier, template_name: Sty
template_parameters: Mapping[KT, VT _co], in_reply_to: er-
rbot.backends.base.Message = None, groupchat_nick_reply: bool = False)
— None

Sends asynchronously a message to a room or a user.

Same as send but passing a template name and parameters instead of directly the markdown text. :type
groupchat_nick_reply: bool :type in_reply_to: Message :type template_name: str :type identifier:
Identifier :param template_parameters: arguments for the template. :param template_name: name of
the template to use. :param groupchat_nick_reply: if True it will mention the user in the chatroom. :param
in_reply_to: optionally, the original message this message is the answer to. :param identifier: identifier of
the user or room to which you want to send a message to.

start_poller (interval: float, method: Callable[]...], None], times: int = None, args: Tuple = None,

kwargs: Mapping[KT, VT _co] = None)
Start to poll a method at specific interval in seconds.

Note: it will call the method with the initial interval delay for the first time

Also, you can program for example : self.program_poller(self, 30, fetch_stuff) where you have def
fetch_stuff(self) in your plugin

Parameters
e interval (float) —interval in seconds
* method — targetted method

* times (int)—number of times polling should happen (defaults to*‘None‘‘ which causes
the polling to happen indefinitely)

* args — args for the targetted method
* kwargs — kwargs for the targetting method

stop_poller (method: Callable[]...], None], args: Tuple = None, kwargs: Mapping[KT, VT _co] =

None)
stop poller(s).

If the method equals None -> it stops all the pollers you need to regive the same parameters as the original
start_poller to match a specific poller to stop

106 Chapter 8. API documentation

Err Documentation, Release 6.1.1

Parameters
* kwargs — The initial kwargs you gave to start_poller.
* args — The initial args you gave to start_poller.
* method — The initial method you passed to start_poller.

warn_admins (warning: str) — None
Send a warning to the administrators of the bot.

Parameters warning (str)— The markdown-formatted text of the message to send.

class errbot.botplugin.BotPluginBase (bot, name=None)

Bases: errbot.storage.StoreMixin

This class handle the basic needs of bot plugins like loading, unloading and creating a storage It is the main
contract between the plugins and the bot

__init_ (bot, name=None)
Initialize self. See help(type(self)) for accurate signature.

activate () — None
Override if you want to do something at initialization phase (don’t forget to super(Gnagna, self).activate())

bot_config
Get the bot configuration from config.py. For example you can access: self.bot_config. BOT_DATA_DIR

bot_identifier
Get bot identifier on current active backend.

:return Identifier

create_dynamic_plugin (name: str, commands: Tuple[errbot.botplugin.Command], doc: str = ")
Creates a plugin dynamically and exposes its commands right away.

Parameters
* name (str)—name of the plugin.
* commands — a tuple of command definition.
* doc (str) — the main documentation of the plugin.

deactivate () — None
Override if you want to do something at tear down phase (don’t forget to super(Gnagna, self).deactivate())

destroy_dynamic_plugin (name: str)
Reverse operation of create_dynamic_plugin.

This allows you to dynamically refresh the list of commands for example. :type name: st r :param name:
the name of the dynamic plugin given to create_dynamic_plugin.

get_plugin (name) — errbot.botplugin.BotPlugin
Gets a plugin your plugin depends on. The name of the dependency needs to be listed in [Code] section
key DependsOn of your plug file. This method can only be used after your plugin activation (or having
called super().activate() from activate itself). It will return a plugin object.

Parameters name — the name
Returns the BotPlugin object requested.
init_storage () — None

mode
Get the current active backend.

8.1.

errbot package 107

Err Documentation, Release 6.1.1

Returns the mode like ‘tox’, ‘xmpp’ etc...

name
Get the name of this plugin as described in its .plug file.

Returns The plugin name.

poller (interval: float, method: Callablel[[...], None], times: int = None, args: Tuple = None, kwargs:
Mapping[KT, VT _co] = None)

program_next_poll (interval: float, method: Callable[]...], None], times: int = None, args: Tuple =
None, kwargs: Mapping{KT, VT _co] = None)

start_poller (interval: float, method: Callable[][...], None], times: int = None, args: Tuple = None,
kwargs: Mapping[KT, VT _co] = None)
Starts a poller that will be called at a regular interval

Parameters
e interval (float) —interval in seconds
* method — targetted method

* times (int)—number of times polling should happen (defaults to*‘None‘‘ which causes
the polling to happen indefinitely)

* args — args for the targetted method
* kwargs — kwargs for the targetting method

stop_poller (method: Callable[][...], None], args: Tuple = None, kwargs: Mapping[KT, VI _co] =
None)

class errbot.botplugin.Command (function, cmd_type=None, cmd_args=None,

cmd_kwargs=None, name=None, doc=None)
Bases: object

This is a dynamic definition of an errbot command.

__init__ (function, cmd_type=None, cmd_args=None, cmd_kwargs=None, name=None, doc=None)
Create a Command definition.

Parameters

e function - a function or a lambda with the correct signature for the type of command
to inject for example def mycmd(plugin, msg, args) for a botcmd. Note: the first parameter
will be the plugin itself (equivalent to self).

* cmd_type — defaults to botcmd but can be any decorator function used for errbot com-
mands.

* cmd_args — the parameters of the decorator.
* cmd_kwargs — the kwargs parameter of the decorator.

* name — defaults to the name of the function you are passing if it is a first class function or
needs to be set if you use a lambda.

* doc — defaults to the doc of the given function if it is a first class function. It can be set
for a lambda or overridden for a function with this.

exception errbot.botplugin.CommandError (reason: str, template: str = None)
Bases: Exception

Use this class to report an error condition from your commands, the command did not proceed for a known
“business” reason.

108 Chapter 8. API documentation

Err Documentation, Release 6.1.1

__init__ (reason: str, template: str = None)
Parameters
* reason (str) — the reason for the error in the command.
* template (str) - apply this specific template to report the error.

class errbot.botplugin.SeparatorArgParser (separator: str = None, maxsplit: int = -1)
Bases: errbot.botplugin.ArgParserBase

This argument splitter splits args on a given separator, like str.split () does.
__init__ (separator: str = None, maxsplit: int = -1)
Parameters

* separator (str) — The separator on which arguments should be split. If sep is None,
any whitespace string is a separator and empty strings are removed from the result.

* maxsplit (int) - If given, do at most this many splits.

parse_args (args: str)
This method takes a string of un-split arguments and parses it, returning a list that is the result of splitting.

If splitting fails for any reason it should return an exception of some kind.
Parameters args (str) — string to parse

class errbot.botplugin.ShlexArgParser
Bases: errbot.botplugin.ArgParserBase

This argument splitter splits args using posix shell quoting rules, like shlex.split () does.

parse_args (args)
This method takes a string of un-split arguments and parses it, returning a list that is the result of splitting.

If splitting fails for any reason it should return an exception of some kind.
Parameters args — string to parse

exception errbot.botplugin.ValidationException
Bases: Exception

errbot.botplugin.recurse_check_structure (sample, to_check)

errbot.cli module

errbot.cli.debug (sig, frame)
Interrupt running process, and provide a python prompt for interactive debugging.
errbot.cli.get_config (config_path)

errbot.cli.main ()

errbot.config-template module

errbot.core module

class errbot.core.ErrBot (bot_config)
Bases: errbot.backends.base.Backend, errbot.storage.StoreMixin

ErrBot is the layer taking care of commands management and dispatching.

8.1. errbot package 109

Err Documentation, Release 6.1.1

MSG_ERROR_OCCURRED = 'Computer says nooo. See logs for details'
MSG_UNKNOWN_COMMAND = 'Unknown command: "% (command)s". '

__init__ (bot_config)
Those arguments will be directly those put in BOT_IDENTITY

all commands
Return both commands and re_commands together.

attach_plugin_manager (plugin_manager)
attach_repo_manager (repo_manager)
attach_storage_plugin (storage_plugin)
callback_mention (msg, people)

callback_message (msg)
Processes for commands and dispatches the message to all the plugins.

callback_presence (pres)
Implemented by errBot.

callback_room_ joined (room)
Triggered when the bot has joined a MUC.

Parameters room — An instance of MUCRoom representing the room that was joined.

callback_ room left (room)
Triggered when the bot has left a MUC.

Parameters room — An instance of MUCRoom representing the room that was left.

callback_room_topic (room)
Triggered when the topic in a MUC changes.

Parameters room — An instance of MUCRoom representing the room for which the topic
changed.

callback_stream (stream)
connect_callback ()
disconnect_callback ()
get_command_classes ()

get_doc (command)
Get command documentation

static get_plugin_class_from_method (meth)

initialize_ backend_ storage ()
Initialize storage for the backend to use.

inject_command filters_from (instance_to_inject)
inject_commands_from (instance_to_inject)
inject_flows_from (instance_to_inject)

prefix_groupchat_reply (message: errbot.backends.base.Message, identifier: er-

rbot.backends.base.ldentifier)
Patches message with the conventional prefix to ping the specific contact For example: @gbin, you forgot

the milk !

110 Chapter 8. API documentation

Err Documentation, Release 6.1.1

process_message (msg)
Check if the given message is a command for the bot and act on it. It return True for triggering the
callback_messages on the .callback_messages on the plugins.

Parameters msg — the incoming message.
static process_template (femplate_name, template_parameters)
remove_command_filters_from (instance_to_inject)
remove_commands_ from (instance_to_inject)
remove_flows_from (instance_to_inject)

send (identifier, text, in_reply_to=None, groupchat_nick_reply=False)
Sends a simple message to the specified user.

Parameters
e identifier — an identifier from build_identifier or from an incoming message
* in_reply_to —the original message the bot is answering from
* text — the markdown text you want to send

e groupchat_nick_reply (bool) — authorized the prefixing with the nick form the
user

send_card (card)
Sends a card, this can be overriden by the backends without a super() call.

Parameters card — the card to send.
Returns None

send_message (msg)
This needs to be overridden by the backends with a super() call.

Parameters msg — the message to send.
Returns None

send_simple_reply (msg, text, private=False, threaded=False)
Send a simple response to a given incoming message

Parameters
* private (bool) —if True will force a response in private.

* threaded (bool) — if True and if the backend supports it, sends the response in a
threaded message.

* text — the markdown text of the message.
* msg — the message you are replying to.

send_templated (identifier, template_name, template_parameters, in_reply_to=None,

groupchat_nick_reply=False)
Sends a simple message to the specified user using a template.

Parameters
* template_parameters — the parameters for the template.
* template_name - the template name you want to use.

e identifier — an identifier from build_identifier or from an incoming message, a room
etc.

8.1.

errbot package 111

Err Documentation, Release 6.1.1

* in_reply_to —the original message the bot is answering from

* groupchat_nick_reply (bool) — authorized the prefixing with the nick form the
user

shutdown ()

signal_connect_to_all_plugins ()

split_and_send message (msg)

startup_time = datetime.datetime (2019, 7, 7, 14, 19, 22, 134115)

unknown_command (_, cmd, args)
Override the default unknown command behavior

warn_admins (warning: str) — None
Send a warning to the administrators of the bot.

Parameters warning (str)— The markdown-formatted text of the message to send.

errbot.flow module

class errbot.flow.BotFlow (bot, name=None)
Bases: object

Defines a Flow plugin ie. a plugin that will define new flows from its methods with the @botflow decorator.

__init__ (bot, name=None)
Initialize self. See help(type(self)) for accurate signature.

activate () — None
Override if you want to do something at initialization phase (don’t forget to super(Gnagna, self).activate())

deactivate () — None
Override if you want to do something at tear down phase (don’t forget to super(Gnagna, self).deactivate())

get_command (command_name: str)
Helper to get a specific command.

name
Get the name of this flow as described in its .plug file.

Returns The flow name.

errbot.flow.FLOW_END = <errbot.flow._ FlowEnd object>
Flow marker indicating that the flow ends.

class errbot.flow.Flow (root: errbot.flow.FlowRoot, requestor: errbot.backends.base.ldentifier, ini-
tial_context: Mapping[str, Any])
Bases: object

This is a live Flow. It keeps context of the conversation (requestor and context). Context is just a python
dictionary representing the state of the conversation.

__init__ (root: errbot.flow.FlowRoot, requestor: errbot.backends.base.ldentifier, initial_context:
Mapping[str, Any])

Parameters

¢ root (FlowRoot) — the root of this flow.

* requestor (Identifier) - the user requesting this flow.

112 Chapter 8. API documentation

Err Documentation, Release 6.1.1

* initial_context — any data we already have that could help executing this flow
automatically.

advance (next_step: errbot.flow.FlowNode, enforce_predicate=True)
Move on along the flow. :type enforce predicate: bool :type next_step: F'1owNode :param next_step:
Which node you want to move the flow forward to. :param enforce_predicate: Do you want to check if the
predicate is verified for this step or not.

Usually, if it is a manual step, the predicate is irrelevant because the user will give the missing
information as parameters to the command.

check_identifier (identifier: errbot.backends.base.ldentifier)

current_step
The current step this Flow is waiting on.

name
Helper property to get the name of the flow.

next_autosteps () — List[errbot.flow.FlowNode]
Get the next steps that can be automatically executed according to the set predicates.

next_steps () — List[errbot.flow.FlowNode]
Get all the possible next steps after this one (predicates statisfied or not).

root
The original flowroot of this flow.

class errbot.flow.FlowExecutor (bot)
Bases: object

This is a instance that can monitor and execute flow instances.

__init_ (bot)
Initialize self. See help(type(self)) for accurate signature.

add_flow (flow: errbot.flow.FlowRoot)
Register a flow with this executor.

check_inflight_already_ running (user: errbot.backends.base.ldentifier) — bool

Check if user is already running a flow.

Return type bool

Parameters user (Tdentifier) - the user

check_inflight_flow_triggered (cmd: str, user: errbot.backends.base.ldentifier)
— Tuple[Optional[errbot.flow.Flow], Op-

tional[errbot.flow.FlowNode]]
Check if a command from a specific user was expected in one of the running flow. :type user:

Identifier :type cmd: str :param cmd: the command that has just been executed. :param user:
the identifier of the person who started this flow :returns: The name of the flow it triggered or None if none
were matching.

execute (flow: errbot.flow.Flow)
This is where the flow execution happens from one of the thread of the pool.

start_flow (name: str, requestor: errbot.backends.base.ldentifier, initial_context: Mapping[str, Any])

— errbot.flow.Flow
Starts the execution of a Flow.

8.1. errbot package 113

Err Documentation, Release 6.1.1

stop_£flow (name: str, requestor: errbot.backends.base.ldentifier) — Optional[errbot.flow.Flow]
Stops a specific flow. It is a no op if the flow doesn’t exist. Returns the stopped flow if found.

trigger (cmd: str, requestor: errbot.backends.base.ldentifier, extra_context=None) — Op-
tional[errbot.flow.Flow]
Trigger workflows that may have command cmd as a auto_trigger or an in flight flow waiting for command.

This assume cmd has been correctly executed. :type requestor: Identifier :type cmd: str :param
requestor: the identifier of the person who started this flow :param cmd: the command that has just been
executed. :param extra_context: extra context from the current conversation :returns: The flow it triggered
or None if none were matching.

class errbot.flow.FlowNode (command: str = None, hints: bool = True)
Bases: object

This is a step in a Flow/conversation. It is linked to a specific botcmd and also a “predicate”.

The predicate is a function that tells the flow executor if the flow can enter the step without the user intervention
(automatically). The predicates defaults to False.

The predicate is a function that takes one parameter, the context of the conversation.

__init__ (command: str = None, hints: bool = True)
Creates a FlowNone, takes the command to which the Node is linked to. :type hints: bool :type command:
str :param command: the command this Node is linked to. Can only be None if this Node is a Root.
:param hints: hints the users for the next steps in chat.

connect (node_or_command: Union[FlowNode, str], predicate: Callable[[Mapping[str, Any]], bool]

= <function FlowNode.<lambda>>, hints: bool = True)
Construct the flow graph by connecting this node to another node or a command. The predicate is a func-

tion that tells the flow executor if the flow can enter the step without the user intervention (automatically).
:type hints: bool :param node_or_command: the node or a string for a command you want to connect
this Node to

(this node or command will be the follow up of this one)

Parameters

* predicate —function with one parameter, the context, to determine of the flow executor
can continue automatically this flow with no user intervention.

* hints - hints the user on the next step possible.
Returns the newly created node if you passed a command or the node you gave it to be easily

chainable.

predicate_for_node (node: errbot.flow.FlowNode)
gets the predicate function for the specified child node. :param node: the child node :return: the predicate
that allows the automatic execution of that node.

class errbot.flow.FlowRoot (name: str, description: str)
Bases: errbot.flow.FlowNode

This represent the entry point of a flow description.
__init__ (name: str, description: str)
Parameters
¢ name (str)— The name of the conversation/flow.
* description (str)— A human description of what this flow does.

* hints - Hints for the next steps when triggered.

114 Chapter 8. API documentation

Err Documentation, Release 6.1.1

connect (node_or_command: Union[FlowNode, str], predicate: Callable[[Mapping[str, Any]], bool]
= <function FlowRoot.<lambda>>, auto_trigger: bool = False, room_flow: bool = False)

See FlowNode except fot auto_trigger
Parameters
* predicate -
see FlowNode
* node_or_ command —
see FlowNode

* auto_trigger (bool) — Flag this root as autotriggering: it will start a flow if this
command is executed in the chat.

e room_flow (bool) — Bind the flow to the room instead of a single person

exception errbot.flow.InvalidState
Bases: Exception

Raised when the Flow Executor is asked to do something contrary to the contraints it has been given.

errbot.logs module

errbot.logs. format_1logs (formatter=None, theme_color=None)

You may either use the formatter parameter to provide your own custom formatter, or the theme_color parameter
to use the built in color scheme formatter.

errbot.logs.get_log_colors (theme_color=None)
Return a tuple containing the log format string and a log color dict

errbot.logs.ispydevd ()

errbot.plugin_info module

class errbot.plugin_info.PluginInfo (name: st module: str, doc: sty core: bool,
python_version: Tuple[int, int, int], errbot_minversion:
Tuple[int, int, int], errbot_maxversion: Tuple[int, int,
int], dependencies: List[str], location: pathlib.Path =

None)
Bases: object

__init__ (name: str, module: str, doc: str, core: bool, python_version: Tuple[int, int, int], er-
rbot_minversion: Tuple[int, int, int], errbot_maxversion: Tuple[int, int, int], dependencies:
List[str], location: pathlib.Path = None) — None

static load (plugfile_path: pathlib.Path) — errbot.plugin_info.PluginInfo

static load_file (plugfile, location: pathlib.Path) — errbot.plugin_info.PluginInfo
load_plugin_classes (base_module_name: str, baseclass: Type[CT _co])
location = None

static parse (config: configparser.ConfigParser) — errbot.plugin_info.PluginInfo

Throws ConfigParserError with a meaningful message if the ConfigParser doesn’t contain the minimal
information required.

8.1. errbot package 115

Err Documentation, Release 6.1.1

errbot.plugin_manager module

Logic related to plugin loading and lifecycle

class errbot.plugin_manager.BotPluginManager (storage_plugin: er-
rbot.storage.base.StoragePluginBase,
extra_plugin_dir: Optional[str],
autoinstall_deps: bool,
core_plugins: Tuple[str, ...], plu-
gin_instance_callback: Callable[[str,
Type[errbot.botplugin. BotPlugin]],
errbot.botplugin.BotPlugin], plug-
ins_callback_order: Tuple[Optional[str],
)

Bases: errbot.storage.StoreMixin

__init__ (storage_plugin: errbot.storage.base.StoragePluginBase, extra_plugin_dir: Optional[str],
autoinstall_deps: ~ bool, core_plugins: Tuple[str, ...], plugin_instance_callback:
Callable[[str, Type[errbot.botplugin.BotPlugin]], errbot.botplugin.BotPlugin], plug-

ins_callback_order: Tuple[Optional[str], ...])
Creates a Plugin manager :type autoinstall_deps: bool :type storage_plugin: StoragePluginBase

:param storage_plugin: the plugin used to store to config for this manager :param extra_plugin_dir:
an extra directory to search for plugins :param autoinstall_deps: if True, will install also the plugin
deps from requirements.txt :param core_plugins: the list of core plugin that will be started :param plu-
gin_instance_callback: the callback to instantiate a plugin (to inject the dependency on the bot) :param
plugins_callback_order: the order on which the plugins will be callbacked

activate_flow (name: str)

activate_non_started plugins ()
Activates all plugins that are not activated, respecting its dependencies.

Returns Empty string if no problem occured or a string explaining what went wrong.

activate_plugin (name: sir)
Activate a plugin with its dependencies.

blacklist_plugin (name)
deactivate_all_plugins ()
deactivate_flow (name: str)
deactivate_plugin (name: str)
get_all_ active_plugin_names ()

get_all_active_plugins () — List[errbot.botplugin.BotPlugin]
This returns the list of plugins in the callback ordered defined from the config.

get_all_ plugin_names ()

get_blacklisted plugin()

get_plugin_configuration (name)
get_plugin_obj_by_ name (name: str) — errbot.botplugin.BotPlugin
is_plugin_blacklisted (name)

reload_plugin_by_name (name)
Completely reload the given plugin, including reloading of the module’s code :throws PluginActiva-
tionException: needs to be taken care of by the callers.

116

Chapter 8. API documentation

Err Documentation, Release 6.1.1

remove_plugin (plugin: errbot.botplugin.BotPlugin)
Deactivate and remove a plugin completely. :type plugin: BotPIlugin :param plugin: the plugin to
remove :return:

remove_plugins_from path (roof)
Remove all the plugins that are in the filetree pointed by root.

set_plugin_configuration (name, obj)
shutdown ()
unblacklist_plugin (name)

update_plugin_places (path_list) — Dict[pathlib.Path, str]
This updates where this manager is trying to find plugins and try to load newly found ones. :param
path_list: the path list where to search for plugins. :return: the feedback for any specific path in case of
error.

exception errbot.plugin_manager.IncompatiblePluginException
Bases: errbot.plugin _manager.PluginActivationException

exception errbot.plugin_manager.PluginActivationException
Bases: Exception

exception errbot.plugin_manager.PluginConfigurationException
Bases: errbot.plugin_manager.PluginActivationException

errbot.plugin_manager.check_errbot_version (plugin_info: errbot.plugin_info.Pluginlnfo)
Checks if a plugin version between min_version and max_version is ok for this errbot. Raises Incompatible-
PluginException if not.

errbot.plugin_manager.check_python_plug_section (plugin_info: er-
rbot.plugin_info.Pluginlnfo) —

bool
Checks if we have the correct version to run this plugin. Returns true if the plugin is loadable

errbot.plugin_manager.install_packages (req_path: pathlib.Path)
Installs all the packages from the given requirements.txt

Return an exc_info if it fails otherwise None.

errbot.plugin_manager.populate_doc (plugin_object: errbot.botplugin.BotPlugin, plugin_info:
errbot.plugin_info.Plugininfo) — None

errbot.plugin_wizard module

errbot.plugin_wizard.ask (question, valid_responses=None, validation_regex=None)
Ask the user for some input. If valid_responses is supplied, the user must respond with something present in
this list.

errbot.plugin_wizard.new_plugin_wizard (directory=None)
Start the wizard to create a new plugin in the current working directory.

errbot.plugin_wizard.render_ plugin (values)
Render the Jinja template for the plugin with the given values.

8.1. errbot package 117

Err Documentation, Release 6.1.1

errbot.repo_manager module

class errbot.repo_manager .BotRepoManager (storage_plugin: er-

rbot.storage.base.StoragePluginBase, plugin_dir:

str; plugin_indexes: Tuple[str, ...])
Bases: errbot.storage.StoreMixin

Manages the repo list, git clones/updates or the repos.

__init__ (storage_plugin: errbot.storage.base.StoragePluginBase, plugin_dir: str, plugin_indexes:

Tuple[str, ...]) — None
Make a repo manager. :type plugin_dir: str :type storage_plugin: StoragePluginBase :param

storage_plugin: where the manager store its state. :param plugin_dir: where on disk it will git clone the
repos. :param plugin_indexes: a list of URL / path to get the json repo index.

add_plugin_repo (name: str, url: str) — None
check_for_ index_update () — None
get_all_repos_paths () — List[str]
get_installed_plugin_repos () — Dict[str, str]

get_repo_from_index (repo_name: str) — List[errbot.repo_manager.RepoEntry]
Retrieve the list of plugins for the repo_name from the index.

Parameters repo_name (str) — the name of the repo
Returns a list of RepoEntry
index_update () — None

install_repo (repo: str) — str
Install the repository from repo

Return type str
Parameters repo (str)-—

The url, git url or path on disk of a repository. It can point to either a git repo or a
.tar.gz of a plugin

Returns The path on disk where the repo has been installed on.
Raises RepoException if an error occured.

search_repos (query: str) — Generator[errbot.repo_manager.RepoEntry, None, None]
A simple search feature, keywords are AND and case insensitive on all the fields.

Parameters query (str) — a string query
Returns an iterator of RepoEntry

set_plugin_repos (repos: Dict[str, str]) — None
Used externally.

shutdown () — None
uninstall_repo (name: str) — None
update_all_repos () — Generator[Tuple[str, int, str], None, None]

update_repos (repos) — Generator[Tuple[str, int, str], None, None]
This git pulls the specified repos on disk. Yields tuples like (name, success, reason)

118

Chapter 8. API documentation

Err Documentation, Release 6.1.1

class errbot.repo_manager .RepoEntry (entry_name, name, python, repo, path, avatar_url, docu-

mentation)
Bases: tuple

avatar url
Alias for field number 5

documentation
Alias for field number 6

entry name
Alias for field number 0

name
Alias for field number 1

path
Alias for field number 4

python
Alias for field number 2

repo
Alias for field number 3

exception errbot.repo_manager.RepoException
Bases: Exception

errbot.repo_manager.check_dependencies (req_path: pathlib.Path) — Tuple[Optional[str], Se-

quence(str]]
This methods returns a pair of (message, packages missing). Or None, [] if everything is OK.

errbot.repo_manager.human_name_for_git_url (url)
errbot.repo_manager .makeEntry (repo_name: str, plugin_name: str, json_value)

errbot.repo_manager.tokenizeJsonEntry (json_dict)
Returns all the words in a repo entry.

errbot.repo_manager.which (program)

errbot.streaming module

class errbot.streaming.Tee (incoming_stream, clients)
Bases: object
Tee implements a multi reader / single writer

__init__ (incoming_stream, clients)
clients is a list of objects implementing callback_stream

run ()
streams to all the clients synchronously

start ()
starts the transfer asynchronously

errbot.streaming.repeatfunc (func, times=None, *args)
Repeat calls to func with specified arguments.

Example: repeatfunc(random.random)

Parameters

8.1. errbot package

119

Err Documentation, Release 6.1.1

* args — params to the function to call.
* times — number of times to repeat.

* func - the function to repeatedly call.

errbot.templating module

errbot.templating.add_plugin_templates_path (plugin_info: errbot.plugin_info.Plugininfo)

errbot.templating.make_templates_path (root: pathlib.Path) — pathlib.Path

errbot.templating.remove_plugin_templates_path (plugin_info:

er-

rbot.plugin_info.Plugininfo)

errbot.templating.tenv ()

errbot.utils module

errbot.utils.collect_roots (base_paths, file_sig="*plug’)
Collects all the paths from base_paths recursively that contains files of type file_sig.

Parameters

* base_paths — alist of base paths to walk from elements can be a string or a list/tuple

of strings
* file_ sig (str) - the file pattern to look for
Returns a set of paths

class errbot.utils.deprecated (new=None)
Bases: object

deprecated decorator. emits a warning on a call on an old method and call the new method anyway

__init__ (new=None)
Initialize self. See help(type(self)) for accurate signature.

errbot.utils.find roots (path, file_sig="*plug’)
Collects all the paths from path recursively that contains files of type file_sig.

Parameters
e path — a base path to walk from
» file_sig(str) - the file pattern to look for
Returns a set of paths
errbot.utils.format_timedelta (timedelta)

errbot.utils.git_clone (url: str, path: str) — None
Clones a repository from git url to path

errbot.utils.git_pull (repo_path: str) — None
Does a git pull on a repository

errbot.utils.git_tag_list (repo_path: str) — List[str]
Lists git tags on a cloned repo

errbot.utils.global_restart ()
Restart the current process.

120 Chapter 8

. APl documentation

Err Documentation, Release 6.1.1

errbot.utils.rate_limited (min_interval)

decorator to rate limit a function.
Parameters min_interwval — minimum interval allowed between 2 consecutive calls.

Returns the decorated function

errbot.utils.split_string_after (str_,n)

Yield chunks of length n from the given string
Parameters
* n —length of the chunks.

* str — the given string.

errbot.utils.version2tuple (version)

errbot.version module

8.1.3 Module contents

class errbot.BotPlugin (bot, name=None)

Bases: errbot.botplugin.BotPluginBase

activate () — None
Triggered on plugin activation.

Override this method if you want to do something at initialization phase (don’t forget to su-
per().activate()).

build_identifier (txtrep: str) — errbot.backends.base.ldentifier
Transform a textual representation of a user identifier to the correct Identifier object you can set in Mes-
sage.to and Message.frm.

Return type Tdentifier

Parameters txtrep (str) - the textual representation of the identifier (it is backend depen-
dent).

Returns a user identifier.

callback_botmessage (message: errbot.backends.base.Message)
Triggered on every message coming from the bot itself.

Override this method to get notified on all messages coming from the bot itself (including those from
other plugins).

Parameters message (Message)— Aninstance of Mes sage representing the message that
was received.

callback_connect () — None
Triggered when the bot has successfully connected to the chat network.

Override this method to get notified when the bot is connected.

callback_mention (message: errbot.backends.base.Message, =~ mentioned_people: Se-

quence[errbot.backends.base.Identifier]) — None
Triggered if there are mentioned people in message.

Override this method to get notified when someone was mentioned in message. [Note: This might not be
implemented by all backends.]

Parameters

8.1.

errbot package 121

Err Documentation, Release 6.1.1

* message (Message) — representing the message that was received.
* mentioned_people - all mentioned people in this message.

callback_message (message: errbot.backends.base.Message) — None
Triggered on every message not coming from the bot itself.

Override this method to get notified on ANY message.
Parameters message (Message) — representing the message that was received.

callback_presence (presence: errbot.backends.base.Presence) — None
Triggered on every presence change.

Parameters presence (Presence) — An instance of Presence representing the new
presence state that was received.

callback_room_joined (room: errbot.backends.base.Room)
Triggered when the bot has joined a MUC.

Parameters room (Room)— An instance of MUCRoom representing the room that was joined.

callback_room left (room: errbot.backends.base.Room)
Triggered when the bot has left a MUC.

Parameters room (Room) — An instance of MUCRoom representing the room that was left.

callback_room_topic (room: errbot.backends.base.Room)
Triggered when the topic in a MUC changes.

Parameters room (Room) — An instance of MUCRoom representing the room for which the
topic changed.

callback_stream (stream: errbot.backends.base.Stream) — None
Triggered asynchronously (in a different thread context) on every incoming stream request or file transfert
requests. You can block this call until you are done with the stream. To signal that you accept / reject the
file, simply call stream.accept() or stream.reject() and return.

Parameters stream (St ream) — the incoming stream request.
change_presence (status: str = ’online’, message: str = ”) — None

Changes the presence/status of the bot.

Parameters

* status (str) — One of the constant defined in base.py : ONLINE, OFFLINE,
DND.,...

* message (str)— Additional message
Returns None
check_configuration (configuration: Mapping[KT, VT _co]) — None
By default, this method will do only a BASIC check. You need to override it if you want to do more

complex checks. It will be called before the configure callback. Note if the config_template is None, it
will never be called.

It means recusively:
1. in case of a dictionary, it will check if all the entries and from the same type are there and not more.

2. in case of an array or tuple, it will assume array members of the same type of first element of the
template (no mix typed is supported)

122 Chapter 8. API documentation

Err Documentation, Release 6.1.1

In case of validation error it should raise a errbot. ValidationException
Parameters configuration — the configuration to be checked.

configure (configuration: Mapping[KT, VI _co]) — None
By default, it will just store the current configuration in the self.config field of your plugin. If this plugin
has no configuration yet, the framework will call this function anyway with None.

This method will be called before activation so don’t expect to be activated at that point.
Parameters configuration —injected configuration for the plugin.

deactivate () — None
Triggered on plugin deactivation.

Override this method if you want to do something at tear-down phase (don’t forget to super().deactivate()).

get_configuration_template () — Mapping[KT, VT _co]
If your plugin needs a configuration, override this method and return a configuration template.

For example a dictionary like: return { 'LOGIN’ : ‘example @example.com’, ‘PASSWORD’ : ‘password’ }
Note: if this method returns None, the plugin won’t be configured

query_room (room: str) — errbot.backends.base.Room
Query a room for information.

Return type Room

Parameters room (str) — The JID/identifier of the room to query for.
Returns An instance of MUCRoom.

Raises RoomDoesNotExistError if the room doesn’t exist.

rooms () — Sequence[errbot.backends.base.Room]
The list of rooms the bot is currently in.

send (identifier: errbot.backends.base.ldentifier, text: str, in_reply_to: errbot.backends.base.Message

= None, groupchat_nick_reply: bool = False) — None
Send a message to a room or a user.

Parameters

* groupchat_nick_ reply (bool) — if True the message will mention the user in
the chatroom.

* in_reply_to (Message) — the original message this message is a reply to (op-
tional). In some backends it will start a thread.

¢ text (str) - markdown formatted text to send to the user.

e identifier (Identifier)— An ldentifier representing the user or room to mes-
sage. Identifiers may be created with build identifier ().

”»

send_card (body: str = 7, to: errbot.backends.base.ldentifier = None, in_reply_to: er-
rbot.backends.base.Message = None, summary: str = None, title: str = ”, link: str = None,
image: str = None, thumbnail: str = None, color: str = ’green’, fields: Tuple[Tuple[str,

str], ...] =()) — None
Sends a card.

A Card is a special type of preformatted message. If it matches with a backend similar concept like on
Slack or Hipchat it will be rendered natively, otherwise it will be sent as a regular formatted message.

Parameters

* body (str)— main text of the card in markdown.

8.1.

errbot package 123

mailto:'example@example.com

Err Documentation, Release 6.1.1

* to (Identifier) — the card is sent to this identifier (Room, RoomOccupant, Per-
son...).

e in_reply to (Message) — the original message this message is a reply to (op-
tional).

* summary (str)— (optional) One liner summary of the card, possibly collapsed to it.
e title (str) - (optional) Title possibly linking.

e link (str)— (optional) url the title link is pointing to.

* image (str) — (optional) link to the main image of the card.

* thumbnail (str)— (optional) link to an icon / thumbnail.

e color (str) — (optional) background color or color indicator.

» fields — (optional) a tuple of (key, value) pairs.

send_stream_request (user: errbot.backends.base.ldentifier, fsource: io.IOBase, name: str =

None, size: int = None, stream_type: str = None)
Sends asynchronously a stream/file to a user.

Parameters
* user (Identifier)—is the identifier of the person you want to send it to.
* fsource (IOBase) —is a file object you want to send.
* name (str) —is an optional filename for it.
* size (int) —is optional and is the espected size for it.
* stream_type (str) —is optional for the mime_type of the content.

It will return a Stream object on which you can monitor the progress of it.

send_templated (identifier: errbot.backends.base.ldentifier, template_name: Str,
template_parameters: Mapping[KT, VT _co], in_reply_to: er-
rbot.backends.base.Message = None, groupchat_nick_reply: bool = False)
— None

Sends asynchronously a message to a room or a user.

Same as send but passing a template name and parameters instead of directly the markdown text. :type
groupchat_nick_reply: bool :type in_reply_to: Message :type template_name: str :type identifier:
Identifier :param template_parameters: arguments for the template. :param template_name: name
of the template to use. :param groupchat_nick_reply: if True it will mention the user in the chatroom.
:param in_reply_to: optionally, the original message this message is the answer to. :param identifier:
identifier of the user or room to which you want to send a message to.

start_poller (interval: float, method: Callable[][...], None], times: int = None, args: Tuple = None,

kwargs: Mapping[KT, VT _co] = None)
Start to poll a method at specific interval in seconds.

Note: it will call the method with the initial interval delay for the first time

Also, you can program for example : self.program_poller(self, 30, fetch_stuff) where you have def
fetch_stuff(self) in your plugin

Parameters
* interval (float) —interval in seconds

* method — targetted method

124 Chapter 8. API documentation

Err Documentation, Release 6.1.1

* times (int) — number of times polling should happen (defaults to‘‘None‘* which
causes the polling to happen indefinitely)

* args — args for the targetted method
* kwargs — kwargs for the targetting method

stop_poller (method: Callable[]...], None], args: Tuple = None, kwargs: Mapping[KT, VT _co] =

None)
stop poller(s).

If the method equals None -> it stops all the pollers you need to regive the same parameters as the original
start_poller to match a specific poller to stop

Parameters
* kwargs — The initial kwargs you gave to start_poller.
* args — The initial args you gave to start_poller.
* method — The initial method you passed to start_poller.

warn_admins (warning: str) — None
Send a warning to the administrators of the bot.

Parameters warning (str) — The markdown-formatted text of the message to send.

exception errbot.CommandError (reason: str, template: str = None)
Bases: Exception

Use this class to report an error condition from your commands, the command did not proceed for a known
“business” reason.

__init__ (reason: str, template: str = None)
Parameters
e reason (str) — the reason for the error in the command.
* template (str) - apply this specific template to report the error.

class errbot.Command (function, cmd_type=None, cmd_args=None, cmd_kwargs=None, name=None,

doc=None)
Bases: object

This is a dynamic definition of an errbot command.

__init__ (function, cmd_type=None, cmd_args=None, cmd_kwargs=None, name=None, doc=None)
Create a Command definition.

Parameters

e function - a function or a lambda with the correct signature for the type of com-
mand to inject for example def mycmd(plugin, msg, args) for a botcmd. Note: the first
parameter will be the plugin itself (equivalent to self).

* cmd_type — defaults to botcmd but can be any decorator function used for errbot
commands.

* cmd_args — the parameters of the decorator.
e cmd_kwargs — the kwargs parameter of the decorator.

* name — defaults to the name of the function you are passing if it is a first class function
or needs to be set if you use a lambda.

8.1. errbot package 125

Err Documentation, Release 6.1.1

* doc — defaults to the doc of the given function if it is a first class function. It can be
set for a lambda or overridden for a function with this.

errbot .webhook (*args, methods: Tuple[str] = ('POST’, 'GET’), form_param: str = None, raw: bool =

False) — Callable[[errbot.botplugin.BotPlugin, Any], str]
Decorator for webhooks

Parameters

* uri_rule - The URL to use for this webhook, as per Bottle request routing syntax. For
more information, see:

— http://bottlepy.org/docs/dev/tutorial.html#request-routing
— http://bottlepy.org/docs/dev/routing.html

* methods — A tuple of allowed HTTP methods. By default, only GET and POST are
allowed.

e form_param (str)- The key who’s contents will be passed to your method’s payload
parameter. This is used for example when using the application/x-www-form-urlencoded
mimetype.

* raw (bool) — When set to true, this overrides the request decoding (including
form_param) and passes the raw http request to your method’s payload parameter. The
value of payload will be a Bottle BaseRequest.

This decorator should be applied to methods of Bot P1ugin classes to turn them into webhooks which can be
reached on Err’s built-in webserver. The bundled Webserver plugin needs to be configured before these URL’s
become reachable.

Methods with this decorator are expected to have a signature like the following:

@webhook
def a_webhook (self, payload):
pass

errbot .webroute (0bj)
Check for functions to route in obj and route them.

errbot .cmdfilter (*args, **kwargs)
Decorator for command filters.

This decorator should be applied to methods of Bot P1ugin classes to turn them into command filters.

These filters are executed just before the execution of a command and provide the means to add features such as
custom security, logging, auditing, etc.

These methods are expected to have a signature and tuple response like the following:

@cmdfilter
def some_filter(self, msg, cmd, args, dry_run):
:param msg: The original chat message.
:param cmd: The command name itself.
:param args: Arguments passed to the command.
:param dry_run: True when this is a dry-run.
Dry-runs are performed by certain commands (such as !help)
to check whether a user is allowed to perform that command
if they were to issue it. If dry_run is True then the plugin
shouldn't actually do anything beyond returning whether the
command 1is authorized or not.

(continues on next page)

126 Chapter 8. API documentation

http://bottlepy.org/docs/dev/tutorial.html#request-routing
http://bottlepy.org/docs/dev/routing.html
http://bottlepy.org/docs/dev/api.html#bottle.BaseRequest

Err Documentation, Release 6.1.1

(continued from previous page)

mmon

If wishing to block the incoming command:

return None, None, None

Otherwise pass data through to the (potential) next filter:
return msg, cmd, args

Note that a cmdfilter plugin could modify cmd or args above and send that through in order to make it appear
as if the user issued a different command.

errbot .botemd (*args, hidden: bool = None, name: str = None, split_args_with: str = ", admin_only: bool
= False, historize: bool = True, template: str = None, flow_only: bool = False, syntax: str
= None) — Callable[[errbot.botplugin.BotPlugin, errbot.backends.base.Message, Any],

Any]
Decorator for bot command functions

Parameters

* hidden (bool) — Prevents the command from being shown by the built-in help com-
mand when True.

* name (str)— The name to give to the command. Defaults to name of the function itself.

* split_args_with (str) — Automatically split arguments on the given separator.
Behaviour of this argument is identical to str.split ()

* admin_only (bool) — Only allow the command to be executed by admins when True.

* historize (bool) — Store the command in the history list (/history). This is enabled
by default.

* template (str) - The markdown template to use.
* syntax (str)— The argument syntax you expect for example: ‘[name] <mandatory>’.

* flow_only (bool) — Flag this command to be available only when it is part of a flow.
If True and hidden is None, it will switch hidden to True.

This decorator should be applied to methods of BotPIugin classes to turn them into commands that can be
given to the bot. These methods are expected to have a signature like the following:

@botcmd
def some_command(self, msg, args):
pass

The given msg will be the full message object that was received, which includes data like sender, receiver,
the plain-text and html body (if applicable), etc. args will be a string or list (depending on your value of
split_args_with) of parameters that were given to the command by the user.

errbot .re_botemd (*args, hidden: bool = None, name: str = None, admin_only: bool = False, historize:
bool = True, template: str = None, pattern: str = None, flags: int = 0, matchall: bool
= False, prefixed: bool = True, flow_only: bool = False, re_cmd_name_help: str =
None) — Callable[[errbot.botplugin.BotPlugin, errbot.backends.base.Message, Any],

Any]
Decorator for regex-based bot command functions

Parameters

» pattern (str) — The regular expression a message should match against in order to
trigger the command.

8.1. errbot package 127

Err Documentation, Release 6.1.1

* flags (int) — The flags parameter which should be passed to re.compile (). This
allows the expression’s behaviour to be modified, such as making it case-insensitive for
example.

* matchall (bool)— By default, only the first match of the regular expression is returned
(as a re. MatchObject). When matchall is True, all non-overlapping matches are returned
(as a list of re.MatchObject items).

* prefixed (bool)—Requires user input to start with a bot prefix in order for the pattern
to be applied when True (the default).

* hidden (bool) — Prevents the command from being shown by the built-in help com-
mand when True.

* name (str)— The name to give to the command. Defaults to name of the function itself.
* admin_only (bool) — Only allow the command to be executed by admins when True.

* historize (bool) — Store the command in the history list (/history). This is enabled
by default.

* template (str) — The template to use when using markdown output

* flow_only (bool) — Flag this command to be available only when it is part of a flow.
If True and hidden is None, it will switch hidden to True.

This decorator should be applied to methods of BotPIugin classes to turn them into commands that can be
given to the bot. These methods are expected to have a signature like the following:

@re_botcmd (pattern=r'”"some commandS$')
def some_command(self, msg, match):
pass

The given msg will be the full message object that was received, which includes data like sender, receiver,
the plain-text and html body (if applicable), etc. match will be a re .MatchObject containing the result of
applying the regular expression on the user’s input.

errbot .arg_botemd (*args, hidden: bool = None, name: str = None, admin_only: bool = False,
historize: bool = True, template: str = None, flow_only: bool = False, un-
pack_args: bool = True, **kwargs) — Callable[[errbot.botplugin.BotPlugin, er-

rbot.backends.base.Message, Any], Any]
Decorator for argparse-based bot command functions

https://docs.python.org/3/library/argparse.html
This decorator creates an argparse. ArgumentParser and uses it to parse the commands arguments.
This decorator can be used multiple times to specify multiple arguments.

Any valid argparse.add_argument() parameters can be passed into the decorator. Each time this decorator is
used it adds a new argparse argument to the command.

Parameters

* hidden (bool) — Prevents the command from being shown by the built-in help com-
mand when True.

* name (str)— The name to give to the command. Defaults to name of the function itself.
* admin_only (bool) — Only allow the command to be executed by admins when True.

* historize (bool) — Store the command in the history list (‘history). This is enabled
by default.

* template (str) - The template to use when using markdown output

128 Chapter 8. API documentation

https://docs.python.org/3/library/argparse.html

Err Documentation, Release 6.1.1

* flow_only (bool) — Flag this command to be available only when it is part of a flow.
If True and hidden is None, it will switch hidden to True.

* unpack_args (bool)— Should the argparser arguments be “unpacked” and passed on
the the bot command individually? If this is True (the default) you must define all argu-
ments in the function separately. If this is False you must define a single argument args
(or whichever name you prefer) to receive the result of ArgumentParser.parse_args().

This decorator should be applied to methods of BotPIugin classes to turn them into commands that can be
given to the bot. The methods will be called with the original msg and the argparse parsed arguments. These
methods are expected to have a signature like the following (assuming unpack_args=True):

@arg botemd('value', type=str)
@arg botcemd ('-—-repeat-count', dest='repeat', type=int, default=2)
def repeat_the_value(self, msg, value=None, repeat=None) :

return value * repeat

The given msg will be the full message object that was received, which includes data like sender, receiver, the
plain-text and html body (if applicable), etc. value will hold the value passed in place of the value argument and
repeat will hold the value passed in place of the —repeat-count argument.

If you don’t like this automatic “unpacking” of the arguments, you can use unpack_args=False like this:

@arg _botemd('value', type=str)
@arg botemd ('--repeat-count', dest='repeat', type=int, default=2, unpack_
—args=False)
def repeat_the_value(self, msg, args):
return arg.value * args.repeat

Note: The unpack_args=False only needs to be specified once, on the bottom @args_botcmd statement.

errbot .botflow (*args, **kwargs)
Decorator for flow of commands.

TODO(gbin): example / docs

errbot .botmatch (*args, **kwargs)
Decorator for regex-based message match.

Parameters

* xargs — The regular expression a message should match against in order to trigger the
command.

* flags — The flags parameter which should be passed to re . compile (). This allows
the expression’s behaviour to be modified, such as making it case-insensitive for example.

* matchall — By default, only the first match of the regular expression is returned (as a
re.MatchObject). When matchall is True, all non-overlapping matches are returned (as a
list of re.MatchObject items).

* hidden - Prevents the command from being shown by the built-in help command when
True.

* name — The name to give to the command. Defaults to name of the function itself.
* admin_only — Only allow the command to be executed by admins when True.

* historize - Store the command in the history list (‘history). This is enabled by de-
fault.

8.1. errbot package 129

Err Documentation, Release 6.1.1

* template — The template to use when using Markdown output.

* flow_only - Flag this command to be available only when it is part of a flow. If True
and hidden is None, it will switch hidden to True.

For example:

@botmatch(r'” (?:Yes|No)$")
def yes_or_no(self, msg, match):
pass

class errbot .BotFlow (bot, name=None)
Bases: object

Defines a Flow plugin ie. a plugin that will define new flows from its methods with the @botflow decorator.

__init__ (bot, name=None)
Initialize self. See help(type(self)) for accurate signature.

activate () — None
Override if you want to do something at initialization phase (don’t forget to super(Gnagna, self).activate())

deactivate () — None
Override if you want to do something at tear down phase (don’t forget to super(Gnagna, self).deactivate())

get_command (command_name: str)
Helper to get a specific command.

name
Get the name of this flow as described in its .plug file.

Returns The flow name.

class errbot.FlowRoot (name: str, description: str)
Bases: errbot. flow.FlowNode

This represent the entry point of a flow description.
__init__ (name: str, description: str)
Parameters
* name (str)— The name of the conversation/flow.
* description (str)— A human description of what this flow does.
* hints — Hints for the next steps when triggered.

connect (node_or_command: Union[FlowNode, str], predicate: Callable[[Mapping[str, Any]], bool]
= <function FlowRoot.<lambda>>, auto_trigger: bool = False, room_flow: bool = False)

See FlowNode except fot auto_trigger
Parameters
* predicate -
see FlowNode
* node_or command —
see FlowNode

* auto_trigger (bool) —Flag this root as autotriggering: it will start a flow if this
command is executed in the chat.

e room_flow (bool)— Bind the flow to the room instead of a single person

130 Chapter 8. API documentation

Err Documentation, Release 6.1.1

class errbot.Flow (root: errbot.flow.FlowRoot, requestor: errbot.backends.base.ldentifier, ini-

tial_context: Mapping[str, Any])
Bases: object

This is a live Flow. It keeps context of the conversation (requestor and context). Context is just a python
dictionary representing the state of the conversation.

__init__ (root: errbot.flow.FlowRoot, requestor: errbot.backends.base.ldentifier, initial_context:
Mapping[str, Any])

Parameters
* root (FlowRoot) — the root of this flow.
* requestor (Identifier)— the user requesting this flow.

e initial_context — any data we already have that could help executing this flow
automatically.

advance (next_step: errbot.flow.FlowNode, enforce_predicate=True)
Move on along the flow. :type enforce_predicate: bool :type next_step: F'1owNode :param next_step:
Which node you want to move the flow forward to. :param enforce_predicate: Do you want to check if
the predicate is verified for this step or not.

Usually, if it is a manual step, the predicate is irrelevant because the user will give the missing
information as parameters to the command.

check_identifier (identifier: errbot.backends.base.ldentifier)

current_step
The current step this Flow is waiting on.

name
Helper property to get the name of the flow.

next_autosteps () — List[errbot.flow.FlowNode]
Get the next steps that can be automatically executed according to the set predicates.

next_steps () — List[errbot.flow.FlowNode]
Get all the possible next steps after this one (predicates statisfied or not).

root
The original flowroot of this flow.

8.1. errbot package 131

Err Documentation, Release 6.1.1

132 Chapter 8. APl documentation

CHAPTER 9

Release history

9.1 v6.1.1 (2019-06-22)

fixes:

* Installation using wheel distribution on python 3.6 or older

9.2 v6.1.0 (2019-06-16)

features:
* Use python git instead of system git binary (#1296)
fixes:
e errbot -1 cli error (#1315)
* Slack backend by pinning slackclient to supported version (#1343)
* Make —storage-merge merge configs (#1311)
» Exporting values in backup command (#1328)
* Rename Spark to Webex Teams (#1323)
* Various documentation fixes (#1310, #1327, #1331)

9.3 v6.0.0 (2019-03-23)

features:
 TestBot: Implement inject_mocks method (#1235)

» TestBot: Add multi-line command test support (#1238)

133

Err Documentation, Release 6.1.1

* Added optional room arg to inroom
* Adds ability to go back to a previous room

* Pass telegram message id to the callback

* Remove extra spaces in uptime output

* Fix/backend import error messages (#1248)

* Add docker support for installing package dependencies (#1245)

* variable name typo (#1244)

¢ Fix invalid variable name (#1241)

* sanitize comma quotation marks too (#1236)

* Fix missing string formatting in “Command not found” output (#1259)
* Fix webhook test to not call fixture directly

* fix: arg_botcmd decorator now can be used as plain method

* setup: removing dnspython

* pin markdown <3.0 because safe is deprecated

9.4 v6.0.0-alpha (2018-06-10)

major refactoring:
* Removed Yapsy dependency
» Replaced back Bottle and Rocket by Flask
* new Pep8 compliance
* added Python 3.7 support
» removed Python 3.5 support
* removed old compatibility cruft
* ported formats and % str ops to f-strings
« Started to add field types to improve type visibility across the codebase

» removed cross dependencies between PluginManager & RepoManager

» Use sys.executable explicitly instead of just ‘pip’ (thx Bruno Oliveira)

* Pycodestyle fixes (thx Nitanshu)

* Help: don’t add bot prefix to non-prefixed re cmds (#1199) (thx Robin Gloster)
* split_string_after: fix empty string handling (thx Robin Gloster)

* Escaping bug in dynamic plugins

* botmatch is now visible from the errbot module (fp to Guillaume Binet)

¢ flows: hint boolean was not forwarded

134 Chapter 9. Release history

Err Documentation, Release 6.1.1

Fix possible event without bot_id (#1073) (thx Roi Dayan)
decorators were working only if kwargs were empty

Message.clone was ignoring partial and flows

features:

9.5

fixes:

partial boolean to flag partial mesages (thx Meet Mangukiya)

Slack: room joined callback (thx Jeremy Kenyon)

XMPP: real_jid to get the jid the users logged in (thx Robin Gloster)
The callback order set in the config is not globally respected

Added a default parameter to the storage context manager

v5.2.0 (2018-04-04)

backup fix : SyntaxError: literal_eval on file with statements (thx Bruno Oliveira)
plugin_manager: skip plugins not in CORE_PLUGIN entirely (thx Dylan Page)
repository search fix (thx Sijis)

Text: mentions in the Text backend (thx Sijis)

Text: double @ in replies (thx Sijis)

Slack: Support breaking messages body attachment

Slack: Add channelname to Slackroom (thx Davis Garana Pena)

features:

9.6

fixes:

Enable split arguments on room_join so you can use ~ (thx Robert Honig)

Add support for specifying a custom log formatter (Thx Oz Linden)

Add Sentry transport support (thx Dylan Page)

File transfert support (send_stream_request) on the Hipchat backend (thx Brad Payne)
Show user where they are in a flow (thx Elijah Roberts)

Help commands are sorted alphabetically (thx Fabian Chong)

Proxy support for Slack (thx deferato)

v5.1.3 (2017-10-15)

Default —init config is now compatible with Text backend requirements.
Windows: Config directories as raw string (Thx defAnfaenger)
Windows: Repo Manager first time update (Thx Jake Shadle)

Slack: fix Slack identities to be hashable

Hipchat: fix HicpChat Server XMPP namespace (Thx Antti Palsola)

9.5. v5.2.0 (2018-04-04)

135

Err Documentation, Release 6.1.1

* Hipchat: more aggressive cashing of user list to avoid API quota exceeds (thx Roman)

9.7 v5.1.2 (2017-08-26)

fixes:
e Text: BOT_IDENTITY to stay optional in config.py
 Hipchat: send_card fix for room name lookup (thx Jason Kincl)

* Hipchat: ACL in rooms

9.8 v5.1.1 (2017-08-12)

fixes:
* allows spaces in BOT_PREFIX.

e Text: ACLs were not working (@user vs user inconsistency).

9.9 v5.1.0 (2017-07-24)

fixes:
« allow webhook receivers on / (tx Robin Gloster)
* force utf-8 to release changes (thx Robert Krambovitis)
* don’t generate an errbot section if no version is specified in plugin gen (thx Meet Mangukiya)
* callback on all unknown commands filters
* user friendly message when a room is not found
* webhook with no uri but kwargs now work as intended
e Slack: support for Enterprise Grid (thx Jasper)
* Hipchat: fix room str repr. (thx Roman)
e XMPP: fix for MUC users with @ in their names (thx Joon Guillen)
* certificate generation was failing under some conditions
features:
 Support for threaded messages (Slack initially but API is done for other backends to use)
» Text: now the text backend can emulate an inroom/inperson or asuser/asadmin behavior
¢ Text: autocomplete of command is now supported
 Text: multiline messages are now supported
* start_poller can now be restricted to a number of execution (thx Marek Suppa)
* recurse_check_structure back to public API (thx Alex Sheluchin)
* better flow status (thx lijah Roberts)

* labout returns a git tag instead of just 9.9.9 as version for a git checkout. (thx Sven)

136 Chapter 9. Release history

Err Documentation, Release 6.1.1

 admin notifications can be set up to a set of users (thx Sijis Aviles)

* logs can be colorized with drak, light or nocolor as preference.

9.10 v5.0.1 (2017-05-08)

hotfixes for v5.0.0.
fixes: - fix crash for SUPPRESS_CMD_NOT_FOUND=True (thx Romuald Texier-Marcadé!)

breaking / API cleanups: - Missed patch for 5.0.0: now the name of a plugin is defined by its name in .plug and not its
class name.

9.11 v5.0.0 (2017-04-23)

features:
* Add support for cascaded subcommands (cmd_subl_sub2_sub3) (thx Jeremiah Lowin)
* You can now use symbolic links for your plugins
e Telegram: send_stream_request support added (thx Alexandre Manhaes Savio)
* Callback to unhandled messages (thx tamarin)
 flows: New option to disable the next step hint (thx Aviv Laufer)
¢ IRC: Added Notice support (bot can listen to them)
* Slack: Original slack event message is attached to Message (Thx Bryan Shelton)
 Slack: Added reaction support and Message.extras[‘url’] (Thx Tomer Chachamu)
 Text backend: readline support (thx Robert Coup)

* Test backend: stream requests support (thx Thomas Lee)

¢ When a templated cmd crashes, it was crashing in the handling of the error.
* Slack: no more crash if a message only contains attachments

¢ Slack: fix for some corner case links (Thx Tomer Chachamu)

* Slack: fixed LRU for better performance on large teams

* Slack: fix for undefined key ‘username’ when the bot doesn’t have one (thx Octavio Antonelli)

* Tests: use conftest module to specify testbot fixture location (thx Pavel Savchenko)

* Python 3.6.x added to travis.

* Ported the yield tests to pytest 4.0

* Removed a deprecated dependency for the threadpool, now uses the standard one (thx Muri Nicanor)
breaking / API cleanups:

» removed deprecated presence attributes (nick and occupant)

» removed deprecated type from messages.

9.10. v5.0.1 (2017-05-08) 137

Err Documentation, Release 6.1.1

* utils. ValidationException has moved to errbot. ValidationException and is fully part of the API.

{utils, errbot}.get_class_that_defined_method is now _bot.get_plugin_class_from_method

utils.utf8 has been removed, it was a leftover for python 2 compat.

* utils.compat_str has been removed, it was a vestige for python 2 too.

9.12 v4.3.7 (2017-02-08)

fixes:
* slack: compatibility with slackclient > 1.0.5.

* render test fix (thx Sandeep Shantharam)

9.13 v4.3.6 (2017-01-28)

fixes:

* regression with Markdown 2.6.8.

9.14 v4.3.5 (2016-12-21)

fixes:
* slack: compatibility with slackclient > 1.0.2
* slack: block on reads on RTM (better response time) (Thx Tomer Chachamu)
e slack: fix link names ()
* slack: ignore channel_topic messages (thx Mikhail Sobolev)
* slack: Match ACLs for bots on integration ID
* slack: Process messages from webhook users
* slack: don’t crash when unable to look up alternate prefix
* slack: trm_read refactoring (thx Chris Niemira)
* telegram: fix telegram ID test against ACLs
¢ telegram: ID as strings intead of ints (thx Pmoranga)

* fixed path to the config template in the startup error message (Thx Ondrej Skopek)

9.15 v4.3.4 (2016-10-05)

features:
* Slack: Stream (files) uploads are now supported
 Hipchat: Supports for self-signed server certificates.

fixes:

138 Chapter 9. Release history

Err Documentation, Release 6.1.1

 Card emulation support for links (Thx Robin Gloster)
* IRC: Character limits fix (Thx Igaz)

* Dependency check fix.

9.16 v4.3.3 (2016-09-09)

fixes:
« err references leftovers

* requirements.txt is now standard (you can use git+https:// for example)

9.17 v4.3.2 (2016-09-04)

hotfix:

* removed the hard dependency on pytest for the Text backend

9.18 v4.3.1 (2016-09-03)

features:

* now the threadpool is of size 10 by default and added a configuration.
fixes:

« fixed imporlib/use pip as process (#835) (thx Raphael Wouters)

« if pip is not found, don’t crash errbot

* build_identifier to send message to IRC channels (thx mr Shu)

9.19 v4.3.0 (2016-08-10)

9.19.1 v4.3 features

e DependsOn: entry in .plug and self.get_plugin(...) allowing you to make a plugin dependent from another.
* New entry in config.py: PLUGINS_CALLBACK_ORDER allows you to force a callback order on your installed

plugins.

* Flows can be shared by a room if you build the flow with FlowRoot(room_flow=True) (thx Tobias Wilken)

» New construct for persistence: with self.mutable(key) as value: that allows you to change by side effect value

without bothering to save value back.

9.16. v4.3.3 (2016-09-09)

139

Err Documentation, Release 6.1.1

9.19.2 v4.3 Miscellaneous changes

* This version work only on Python 3.4+ (see 4.2 announcement)

 Presence.nick is deprecated, simply use presence.identifier.nick instead.

* Slack: Bot identity is automatically added to BOT_ALT_PREFIXES

* The version checker now reports your Python version to be sure to not upgrade Python 2 users to 4.3

* Moved testing to Tox. We used to use a custom script, this improves a lot the local testing setup etc. (Thx Pedro
Rodrigues)

9.19.3 v4.3 fixes

* IRC: fixed IRC_ACL_PATTERN
 Slack: Mention callback improvements (Thx Ash Caire)
* Encoding error report was inconsistent with the value checked (Thx Steve Jarvis)

* core: better support for all the types of virtualenvs (Thx Raphael Wouters)

9.20 v4.2.2 (2016-06-24)

fixes:
* send_templated fix
« CHATROOM_RELAY fix

* Blacklisting feedback message corrected

9.21 v4.2.1 (2016-06-10)

Hotfix
* packaging failure under python2
* better README

9.22 v4.2.0 (2016-06-10)

9.22.1 v4.2 Announcement

* Bye bye Python 2 ! This 4.2 branch will be the last to support Python 2. We will maintain bug fixes on it for at
least the end of 2016 so you can transition nicely, but please start now !

Python 3 has been released 8 years ago, now all the major distributions finally have it available, the ecosystem
has moved on too. This was not the case at all when we started to port Errbot to Python 3.

This will clean up a lot of code with ugly if PY2, unicode hacks, 3to2 reverse hacks all over the place and
packaging tricks. But most of all it will finally unite the Errbot ecosystem under one language and open up new
possibilities as we refrained from using py3 only features.

140 Chapter 9. Release history

Err Documentation, Release 6.1.1

A clarification on Errbot’s license has been accepted. The contributors never intended to have the GPL licence
be enforced for external plugins. Even if it was not clear it would apply, our new licence exception makes sure
itisn’t. Big big thanks for the amazing turnout on this one !

9.22.2 v4.2 New features

Errbot initial installation. The initial installation has been drastically simplified:

pip install errbot
mkdir errbot; cd errbot
errbot —--init

errbot -T

>>> <- You are game !!

v W O

Not only that but it also install a development directory in there so it now takes only seconds to have an Errbot
development environment.

Part of this change, we also made most of the config.py entries with sane defaults, a lot of those settings were
not even relevant for most users.

cards are now supported on the graphic backend with a nice rendering (errbot -G)

Hipchat: mentions are now supported.

9.22.3 v4.2 Miscellaneous changes

Documentation improvements

Reorganization and rename of the startup files. Those were historically the first ones to be created and their
meaning drifted over the years. We had err.py, main.py and errBot.py, it was really not clear what were their
functions and why one has been violating the python module naming convention for so long :) They are now
bootstrap.py (everything about configuring errbot), cli.py (everything about the errbot command line) and finally
core.py (everything about the commands, and dispatching etc...).

setup.py cleanup. The hacks in there were incorrect.

9.22.4 v4.2 fixes

core: excpetion formatting was failing on some plugin load failures.

core: When replacing the prefix / from the doctrings only real commands get replaced (thx Raphael Boidol)
core: empty lines on plugins requirements.txt does crash errbot anymore

core: Better error message in case of malformed .plug file

Text: fix on build_identifier (thx Pawet Adamcak)

Slack: several fixes for identifiers parsing, the backend is fully compliant with Errbot’s contract now (thx
Raphael Boidol and Samuel Loretan)

Hipchat: fix on room occupants (thx Roman Forkosh)
Hipchat: fix for organizations with more than 100 rooms. (thx Naman Bharadwaj)

Hipchat: fixed a crash on build_identifier

9.22.

v4.2.0 (2016-06-10) 141

Err Documentation, Release 6.1.1

9.23 v4.1.3 (2016-05-10)

hotfixes:
e Slack: regression on build_identifier

* Hipchat: regression on build_identifier (query for room is not supported)

9.24 v4.1.2 (2016-05-10)

fixes:

* cards for hipchat and slack were not merged.

9.25 v4.1.1 (2016-05-09)

fixes:

 Python 2.7 conversion error on err.py.

9.26 v4.1.0 (2016-05-09)

9.26.1 v4.1 features

* Conversation flows: Errbot can now keep track of conversations with its users and automate part of the interac-
tions in a state machine manageable from chat. see the flows documentation for more information.

» Cards API: Various backends have a “canned” type of formatted response. We now support that for a better
native integration with Slack and Hipchat.

¢ Dynamic Plugins API: Errbot has now an official API to build plugins at runtime (on the fly). see the dynamic
plugins doc

» Storage command line interface: It is now possible to provision any persistent setting from the command line.
It is helpful if you want to automate end to end the deployment of your chatbot. see provisioning doc

9.26.2 v4.1 Miscellaneous changes

* Now if no [python] section is set in the .plug file, we assume Python 3 instead of Python 2.
* Slack: identifier.person now gives its username instead of slack id

* IRC: Topic change callback fixed. Thx Ezequiel Brizuela.

o Text/Test: Makes the identifier behave more like a real backend.

e Text: new TEXT_DEMO_MODE that removes the logs once the chat is started: it is made for presentations /
demos.

* XMPP: build_identifier can now resolve a Room (it will eventually be available on other backends)

* Graphic Test backend: renders way better the chat, TEXT_DEMO_MODE makes it full screen for your presen-
tations.

142 Chapter 9. Release history

http://errbot.io/en/master/user_guide/flow_development/index.html
http://errbot.io/en/master/user_guide/plugin_development/dynaplugs.html
http://errbot.io/en/master/user_guide/plugin_development/dynaplugs.html
http://errbot.io/en/master/user_guide/provisioning.html

Err Documentation, Release 6.1.1

* ACLs: We now allow a simple string as an entry with only one element.

* Unit Tests are now all pure py.test instead of a mix of (py.test, nose and unittest)

9.26.3 v4.1 fixed

¢ Better resillience on concurrent modifications of the commands structures.

Allow multiline table cells. Thx Ilya Figotin.

* Plugin template was incorrectly showing how to check config. Thx Christian Weiske.

Slack: DIVERT_TO_PRIVATE fix.
 Plugin Activate was not reporting correctly some errors.

* tar.gz packaged plugins are working again.

9.27 v4.0.3 (2016-03-17)

fixes:
* XMPP backend compatibility with python 2.7
» Telegram startup error
* daemonize regression

e UTF-8 detection

9.28 v4.0.2 (2016-03-15)

hotfixes:
* configparser needs to be pinned to a 3.5.0b2 beta
 Hipchat regression on Identifiers

* Slack: avoid URI expansion.

9.29 v4.0.1 (2016-03-14)

hotfixes:
¢ v4 doesn’t migrate plugin repos entries from v3.

* py2 compatibility.

9.30 v4.0.0 (2016-03-13)

This is the next major release of errbot with significant changes under the hood.

9.27. v4.0.3 (2016-03-17)

143

Err Documentation, Release 6.1.1

9.30.1 v4.0 New features

Storage is now implemented as a plugin as well, similar to command plugins and backends. This means you can
now select different storage implementations or even write your own.

The following storage backends are currently available:

The traditional Python shelf storage.

In-memory storage for tests or ephemeral storage.

SQL storage which supports relational databases such as MySQL, Postgres, Redshift etc.
Firebase storage for the Google Firebase DB.

Redis storage (thanks Sijis Aviles!) which uses the Redis in-memory data structure store.

Unix-style glob support in BOT_ADMINS and ACCESS_CONTROLS (see the updated config-template.py for
documentation).

The ability to apply ACLs to all commands exposed by a plugin (see the updated config-template.py for docu-
mentation).

The mention_callcack() on IRC (mr. Shu).
A new (externally maintained) Skype backend.

The ability to disable core plugins (such as /help, !status, etc) from loading (see CORE_PLUGINS in the updated
config-template.py).

Added a —new-plugin flag to errbot which can create an emply plugin skeleton for you.
IPv6 configuration support on IRC (Mike Burke)

More flexible access controls on IRC based on nickmasks (in part thanks to Marcus Carlsson). IRC users, see
the new IRC_ACL_PATTERN in config-template.py.

A new callback_mention() for plugins (not available on all backends).
Admins are now notified about plugin startup errors which happen during bot startup

The repos listed by the /repos command are now fetched from a public index and can be queried with /repos
query [keyword]. Additionally, it is now possible to add your own index(es) to this list as well in case you wish
to maintain a private index (special thanks to Sijis Aviles for the initial proof-of-concept implementation).

9.30.2 v4.0 fixed

IRC backend no longer crashes on invalid UTF-8 characters but instead replaces them (mr. Shu).
Fixed joining password-protected rooms (Mikko Lehto)

Compatibility to API changes introduced in slackclient-1.0.0 (used by the Slack backend).
Corrected room joining on IRC (Ezequiel Hector Brizuela).

Fixed “team_join event handler raised an exception” on Slack.

Fixed DIVERT _TO_PRIVATE on HipChat.

Fixed DIVERT _TO_PRIVATE on Slack.

Fixed GROUPCHAT_NICK_PREFIXED not prefixing the user on regular commands.

Fixed HIDE_RESTRICTED_ACCESS from accidentally sending messages when issuing /help.
Fixed DIVERT _TO_PRIVATE on IRC.

144

Chapter 9. Release history

https://github.com/errbotio/err-storage-sql
https://github.com/errbotio/err-storage-firebase
https://github.com/errbotio/err-storage-redis
https://github.com/errbotio/errbot-backend-skype

Err Documentation, Release 6.1.1

* Fixed markdown rendering breaking with GROUPCHAT_NICK_PREFIXED enabled.
Fixed AttributeError with AUTOINSTALL_DEPS enabled.

IRC backend now cleanly disconnects from IRC servers instead of just cutting the connection.
» Text mode now displays the prompt beneath the log output

* Plugins which fail to install no longer remain behind, obstructing a new installation attempt

9.30.3 v4.0 Breaking changes
* The underlying implementation of Identifiers has been drastically refactored to be more clear and correct. This
makes it a lot easier to construct Identifiers and send messages to specific people or rooms.

* The file format for —backup and —restore has changed between 3.x and 4.0 On the v3.2 branch, backup can now
backup using the new v4 format with /backupv4 to make it possible to use with —restore on errbot 4.0.

A number of features which had previously been deprecated have now been removed. These include:

* configure_room and invite_in_room in XMPPBackend (use the equivalent functions on the XMPPRoom object
instead)

e The —xmpp, —hipchat, —slack and —irc command-line options from errbot (set a proper BACKEND in config.py
instead).

9.30.4 v 4.0 Miscellaneous changes

* Version information is now specified in plugin .plug files instead of in the Python class of the plugin.
» Updated /help output, more similar to Hubot’s help output (James O’Beirne and Sijis Aviles).

* XHTML-IM output can now be enabled on XMPP again.

* New —version flag on errbot (mr. Shu).

* Made /log tail admin only (Nicolas Sebrecht).

* Made the version checker asynchronous, improving startup times.

* Optionally allow bot configuration from groupchat

* Message.type is now deprecated in favor of Message.is_direct and Message.is_group.

* Some bundled dependencies have been refactored out into external dependencies.

* Many improvements have been made to the documention, both in docstrings internally as well as the user guide
on the website at http://errbot.io.

9.30.5 Further info on identifier changes

¢ Person, RoomOccupant and Room are now all equal and can be used as-is to send a message to a person, a
person in a Room or a Room itself.

The relationship is as follow:

9.30. v4.0.0 (2016-03-13) 145

http://errbot.io

Err Documentation, Release 6.1.1

=
ZAR

[Roochcupa nt

For example: A Message sent from a room will have a RoomOccupant as frm and a Room as to.

This means that you can now do things like:
o self.send(msg.frm, “Message”)
o self.send(self.query_room(“#general”), “Hello everyone”)

146 Chapter 9. Release history

https://github.com/errbotio/errbot/blob/master/errbot/backends/base.py

cHAaPTER 10

License

Errbot is free software, available under the GPL-3 license. Please refer to the full license text for more
details.

147

Err Documentation, Release 6.1.1

148 Chapter 10. License

Python Module Index

e

errbot,

errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot

errbot.
.logs, 115
.plugin_info, 115
.plugin_manager, 116
.plugin_wizard, 117
.rendering, 98
.rendering.ansiext, 94
.rendering.xhtmlim, 97

errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot

errbot.

121

.core_plugins
.core_plugins
.core_plugins
.core_plugins.
.core_plugins
.core_plugins
.core_plugins
.core_plugins
.core_plugins
.core_plugins
.core_plugins
.core_plugins

flow, 112

.repo_manager,
errbot.

storage, 101

.backend_plugin_manager, 102
.backends, 86
.backends .base, 63
.backends.hipchat, 70
.backends.irc, 72
.backends.telegram _messenger, 77
.backends.text, 80
.backends.xmpp, 83
.bootstrap, 102
.botplugin, 103
.cli, 109

.core, 109
.core_plugins, 94
.core_plugins.acls, 86
.backup, 87
.chatRoom, 87
.cnf_filter, 88

flows, 89

.health, 89
.help, 90
.plugins, 90
.textcmds, 91
.utils, 92
.vcheck, 92
.webserver, 93
.wsview, 94

118

storage.base, 98

errbot
errbot
errbot
errbot
errbot
errbot

.storage.memory, 99
.storage.shelf, 100
.streaming, 119
.templating, 120
.utils, 120
.version, 121

149

Err Documentation, Release 6.1.1

150 Python Module Index

Index

Symbols

__init__ () (errbot.backends.telegram_messenger.Telegramldentifier

__init__ () (errbot.BotFlow method), 130 method), 78
init__ () (errbot.Command method), 125 __init__ () (errbot.backends.telegram_messenger.TelegramMUCOccup
__init__ () (errbot.CommandError method), 125 method), 78
init__ () (errbot.Flow method), 131 __init__ () (errbot.backends.telegram_messenger.TelegramPerson

__init__ () (errbot.FlowRoot method), 130 o method), 79
__init__ () (errbot.backend_plugin_manager.BackendPlugik) (errbot.backends.telegram_messenger.TelegramRoom

method), 102 o method), 79
__init__ () (errbot.backends.base.Backend method), —init_— () (errbot.backends.text. TextBackend

63 method), 80
__init__ () (errbot.backends.base.Card method), 65 —3init__() (errbot.backends.text. TextOccupant
__init__ () (errbot.backends.base.Message method), method), 81

66 __init__ () (errbot.backends.text. TextPerson method),
__init__ () (errbot.backends.base.Presence method), 81

67 _ _init__ () (errbot.backends.text.TextRoom method),
_ init__ () (errbot.backends.base.Stream method), 82

69 __init__ () (errbot.backends.xmpp. XMPPBackend
__init_ () (errbot.backends.hipchat.HipChatRoom method), 83

method), 70 __init__ () (errbot.backends.xmpp.XMPPConnection
__init__ () (errbot.backends.hipchat.HipChatRoomOccupant ~ 'Method), 84

method), 71 __init__ () (errbot.backends.xmpp.XMPPIldentifier
__init__ () (errbot.backends.hipchat.HipchatBackend method), 84

method), 71 __init__ () (errbot.backends.xmpp. XMPPRoom
__init_ () (errbot.backends.hipchat.HipchatClient method), 85

method), 72 __init__ () (errbot.backends.xmpp.XMPPRoomOccupant
__init_ () (errbot.backends.irc.IRCBackend method), 86

method), 72 __init__ () (errbot.botplugin. BotPluginBase
__dinit__ () (errbot.backends.irc.IRCConnection method), 107

method), 73 __init__ () (errbot.botplugin.Command method), 108
__init__ () (errbot.backends.irc.IRCPerson method), —init_— () (errbot.botplugin. CommandError

75 method), 108
_ init__ () (errbot.backends.irc.IRCRoom method), —init_ 0 (errbot.botplugin.SeparatorArgParser

76 method), 109
__init_ () (errbot.backends.irc.IRCRoomOccupant __init__ () (errbot.core.ErrBot method), 110

method), 76 __init__ () (errbot.core_plugins.webserver.Webserver

__init__ () (errbot.backends.telegram_messenger.RoomsNotS uppﬂfékﬁ)@? 3

method), 77

__init__ () (errbot.core_plugins.wsview. WebView

__init__ () (errbot.backends.telegram_messenger. TelegramBackermelhOd)’ 94

method), 77

__init__ () (errbot.flow.BotFlow method), 112
__init__ () (errbot.flow.Flow method), 112

151

Err Documentation, Release 6.1.1

(errbot.flow.FlowExecutor method), 113

(errbot.flow.FlowNode method), 114

(errbot.flow.FlowRoot method), 114
(errbot.plugin_info.Pluginlnfo method),

init
init
init

—_ — — ~—

—_—

(
(
(
__init_ (
5
(

__init__ () (errbot.plugin_manager.BotPluginManager activate_flow ()

method), 116
__init__ () (errbot.rendering.ansiext. BorderlessTable
method), 95

__init__ () (errbot.rendering.ansiext. NSC method),
97

__init__ () (errbot.rendering.ansiext.Table method),
97

__init__ () (errbot.repo_manager.BotRepoManager

method), 118
__init__ () (errbot.storage.StoreMixin method), 101
__init__ () (errbot.storage.base.StoragePluginBase
method), 99
__init__ () (errbot.storage.memory.MemoryStorage
method), 99
_init__ ()
method), 100
__init__ () (errbot.storage.shelf.ShelfStoragePlugin
method), 101
__init__ () (errbot.streaming.Tee method), 119
__init__ () (errbot.utils.deprecated method), 120

A

about () (errbot.core_plugins.help.Help method), 90

accept () (errbot.backends.base.Stream method), 69

access_denied () (errbot.core_plugins.acls.ACLS
method), 86

ack_data () (errbot.backends.base.Stream method),
69

aclattr (errbot.backends.base.Person attribute), 67

(errbot.storage.shelf.ShelfStorage

activate () (errbot.core_plugins.vcheck.VersionChecker
method), 92

activate () (errbot.core_plugins.webserver.Webserver
method), 93

activate () (errbot.flow.BotFlow method), 112

(er-
rbot.plugin_manager.BotPluginManager
method), 116

activate_non_started_plugins ()
rbot.plugin_manager.BotPluginManager
method), 116

activate_plugin ()
rbot.plugin_manager.BotPluginManager
method), 116

activated (errbot.core_plugins.vcheck.VersionChecker
attribute), 92

add_col () (errbot.rendering.ansiext.BorderlessTable
method), 95

add_col () (errbot.rendering.ansiext.Table method),
97

add_event_handler ()
rbot.backends.xmpp. XMPPConnection
method), 84

add_flow () (errbot.flow.FlowExecutor method), 113

add_header () (errbot.rendering.ansiext.BorderlessTable
method), 95

add_header ()
method), 97

add_plugin_repo () (er-
rbot.repo_manager.BotRepoManager method),
118

add_plugin_templates_path () (in module er-
rbot.templating), 120

add_reaction () (errbot.backends.text. TextBackend
method), 80

(er-

(er-

(er-

(errbot.rendering.ansiext. Table

aclattr (errbot.backends.hipchat.HipChatRoomOccupangdvance () (errbot.Flow method), 131

attribute), 71
aclattr (errbot.backends.irc.IRCPerson attribute), 75

advance () (errbot.flow.Flow method), 113
all_commands (errbot.core.ErrBot attribute), 110

aclattr (errbot.backends.telegram_messenger. Telegramldengifidy) (in module errbot.rendering), 98

attribute), 78
aclattr (errbot.backends.text. TextPerson attribute), 81

aclattr (errbot.backends.xmpp. XMPPPerson at-
tribute), 85
aclpattern (errbot.backends.irc.IRCBackend at-

tribute), 72
ACLS (class in errbot.core_plugins.acls), 86
acls () (errbot.core_plugins.acls.ACLS method), 86
activate () (errbot.BotFlow method), 130
activate () (errbot.BotPlugin method), 121
activate () (errbot.botplugin.BotPlugin method), 103
activate () (errbot.botplugin.BotPluginBase
method), 107

activate () (errbot.core_plugins.textcmds. TextModeCmds

method), 91

AnsiExtension (class in errbot.rendering.ansiext),
94

AnsiPostprocessor (class in er-
rbot.rendering.ansiext), 94
AnsiPreprocessor (class in er-

rbot.rendering.ansiext), 95
apropos () (errbot.core_plugins.help.Help method), 90
arg_botcmd () (in module errbot), 128
ArgParserBase (class in errbot.botplugin), 103
asadmin () (errbot.core_plugins.textcmds. TextModeCmds
method), 91
ask () (in module errbot.plugin_wizard), 117
asuser () (errbot.core_plugins.textcmds.TextModeCmds
method), 91

attach_plugin_manager () (errbot.core.ErrBot

152

Index

Err Documentation, Release 6.1.1

method), 110
attach_repo_manager () (errbot.core.ErrBot
method), 110

attach_storage_plugin () (errbot.core.ErrBot

method), 110

avatar_url (errbot.repo_manager.RepoEntry at-
tribute), 119

away () (errbot.backends.irc.IRCConnection method),
73

B

Backend (class in errbot.backends.base), 63

BackendPluginManager (class in er-

rbot.backend_plugin_manager), 102

Backup (class in errbot.core_plugins.backup), 87

backup () (errbot.core_plugins.backup.Backup
method), 87

begin_headers ()
rbot.rendering.ansiext.BorderlessTable
method), 95

begin_headers ()
method), 97

bg_black (errbot.rendering.ansiext.CharacterTable at-
tribute), 95

bg_blue (errbot.rendering.ansiext.CharacterTable at-
tribute), 95

bg_cyan (errbot.rendering.ansiext.Characterlable at-
tribute), 95

bg_default (errbot.rendering.ansiext.CharacterTable
attribute), 95

bg_green (errbot.rendering.ansiext. CharacterTable at-
tribute), 95

bg_magenta (errbot.rendering.ansiext.CharacterTable

attribute), 95

(errbot.rendering.ansiext. CharacterTable at-

tribute), 95

bg_white (errbot.rendering.ansiext.CharacterTable at-
tribute), 95

bg_yellow (errbot.rendering.ansiext.Characterlable
attribute), 95

blacklist_plugin ()
rbot.plugin_manager. BotPluginManager
method), 116

body (errbot.backends.base.Message attribute), 66

bootstrap () (in module errbot.bootstrap), 102

borderless_ansi () (in module
rbot.backends.text), 83

BorderlessTable (class in errbot.rendering.ansiext),

(er-

(errbot.rendering.ansiext. Table

bg_red

(er-

er-

95

bot_config (errbot.botplugin.BotPluginBase at-
tribute), 107

bot_config_defaults () (in module er-

rbot.bootstrap), 102

bot_identifier (errbot.botplugin.BotPluginBase
attribute), 107

botcmd () (in module errbot), 127

BotFlow (class in errbot), 130

BotFlow (class in errbot.flow), 112

botflow () (in module errbot), 129

botmatch () (in module errbot), 129

BotPlugin (class in errbot), 121

BotPlugin (class in errbot.botplugin), 103

BotPluginBase (class in errbot.botplugin), 107

BotPluginManager (class in
rbot.plugin_manager), 116

BotRepoManager (class in errbot.repo_manager), 118

build_identifier (er-
rbot.backends.xmpp.XMPPBackend attribute),
83

er-

build_identifier () (er-
rbot.backends.base.Backend method), 63

build_identifier () (er-
rbot.backends.irc.IRCBackend method),
72

build_identifier () (er-

rbot.backends.telegram_messenger.TelegramBackend

method), 77

build_identifier () (er-
rbot.backends.text. TextBackend method),
80

build_identifier () (errbot.BotPlugin method),
121

build_identifier ()
method), 103
build_message ()

(errbot.botplugin. BotPlugin

(errbot.backends.base.Backend

method), 63

build_message () (errbot.backends.irc.IRCBackend
method), 73

build_reply () (errbot.backends.base.Backend
method), 63

build_reply () (er-
rbot.backends.hipchat. HipchatBackend
method), 71

build_reply ()
method), 73

build_reply ()

(errbot.backends.irc.IRCBackend

(er-

rbot.backends.telegram_messenger.TelegramBackend

method), 77
build_reply ()
method), 80
build_reply () (er-
rbot.backends.xmpp.XMPPBackend method),
83

(errbot.backends.text. TextBackend

C

callback_botmessage ()
method), 121

(errbot.BotPlugin

Index

153

Err Documentation, Release 6.1.1

callback_botmessage () (er-
rbot.botplugin. BotPlugin method), 103
callback_connect () (errbot.BotPlugin method),
121
callback_connect ()
method), 103
callback_connect ()
rbot.core_plugins.chatRoom.ChatRoom
method), 87
callback_connect ()
rbot.core_plugins.vcheck. VersionChecker
method), 92
callback_mention ()
121
callback_mention ()
method), 103
callback_mention () (errbot.core.ErrBot method),
110
callback_message ()
rbot.backends.hipchat. HipchatBackend
method), 71
callback_message ()
122
callback_message ()
method), 103
callback_message () (errbot.core.ErrBot method),
110

(errbot.botplugin.BotPlugin

(er-

(er-

(errbot.BotPlugin method),

(errbot.botplugin.BotPlugin

(er-

(errbot.BotPlugin method),

(errbot.botplugin. BotPlugin

callback_message () (er-
rbot.core_plugins.chatRoom.ChatRoom
method), 87

callback_presence () (er-

rbot.backends.base.Backend method), 63
callback_presence () (errbot.BotPlugin method),
122
callback_presence () (errbot.botplugin.BotPlugin
method), 104
callback_presence ()
method), 110

(errbot.core.ErrBot

callback_room_joined () (er-
rbot.backends.base.Backend method), 63

callback_room_joined() (errbot.BotPlugin
method), 122

callback_room_joined () (er-

rbot.botplugin.BotPlugin method), 104
callback_room_joined () (errbot.core.ErrBot
method), 110

callback_room_left () (er-
rbot.backends.base. Backend method), 64

callback_room left () (errbot.BotPlugin
method), 122

callback_room_left () (er-

rbot.botplugin.BotPlugin method), 104
callback_room_left () (errbot.core.ErrBot
method), 110

callback_room_topic () (er-
rbot.backends.base.Backend method), 64

callback_room_topic () (errbot.BotPlugin
method), 122

callback_room_topic() (er-

rbot.botplugin.BotPlugin method), 104
callback_room_topic () (errbot.core.ErrBot
method), 110
callback_stream () (errbot.BotPlugin method), 122
callback_stream() (errbot.botplugin. BotPlugin

method), 104
callback_stream() (errbot.core.ErrBot method),
110

Card (class in errbot.backends.base), 65
cb_set_topic() (errbot.backends.irc.IRCRoom

method), 76

change_presence () (errbot.backends.base.Backend
method), 64

change_presence () (er-
rbot.backends.irc.IRCBackend method),
73

change_presence () (er-

rbot.backends.telegram_messenger.TelegramBackend

method), 77

change_presence () (er-
rbot.backends.text. TextBackend method),
80

change_presence () (er-

rbot.backends.xmpp.XMPPBackend method),
83

change_presence () (errbot.BotPlugin method), 122

change_presence () (errbot.botplugin.BotPlugin
method), 104

CharacterTable (class in errbot.rendering.ansiext),
95

chat_topic () (errbot.backends.xmpp.XMPPBackend
method), 83

ChatRoom (class in errbot.core_plugins.chatRoom), 87

check_configuration () (errbot.BotPlugin
method), 122
check_configuration () (er-

rbot.botplugin. BotPlugin method), 104

check_configuration () (er-
rbot.core_plugins.webserver. Webserver
method), 93

check_dependencies () (in module er-
rbot.repo_manager), 119

check_errbot_version () (in module er-
rbot.plugin_manager), 117

check_for_index_update () (er-

rbot.repo_manager.BotRepoManager method),
118
check_identifier () (errbot.Flow method), 131
check_identifier () (errbotflow.Flow method),

154

Index

Err Documentation, Release 6.1.1

113
check_inflight_already_running () (er-
rbot.flow.FlowExecutor method), 113
check_inflight_flow_triggered() (er-

rbot.flow.FlowExecutor method), 113
check_python_plug_section () (in module er-
rbot.plugin_manager), 117
check_user () (errbot.core_plugins.flows.Flows
method), 89
ciglob () (in module errbot.core_plugins.acls), 86
client (errbot.backends.base.Person attribute), 67
client (errbot.backends.irc.IRCPerson attribute), 75

connect_callback () (er-
rbot.backends.base.Backend method), 64

connect_callback () (errbot.core.ErrBot method),
110

connected (errbot.core_plugins.chatRoom.ChatRoom
attribute), 87

connected (errbot.core_plugins.vcheck. VersionChecker
attribute), 92

connected () (errbot.backends.xmpp.XMPPBackend
method), 83

contact_offline () (er-
rbot.backends.xmpp. XMPPBackend method),

client (errbot.backends.telegram_messenger. TelegramPerson 83

attribute), 79
client (errbot.backends.text. TextPerson attribute), 81
client (errbot.backends.xmpp.XMPPldentifier at-
tribute), 84

clone () (errbot.backends.base.Message method), 66

clone () (errbot.backends.base.Stream method), 69

close () (errbot.storage.base.StorageBase method), 98

close() (errbot.storage.memory.MemoryStorage
method), 99

close () (errbot.storage.shelf.ShelfStorage method),
100

close_storage()
method), 101

cmd_history (errbot.backends.base.Backend at-
tribute), 64

cmdfilter () (in module errbot), 126

(errbot.storage.StoreMixin

contact_online () (er-
rbot.backends.xmpp.XMPPBackend method),
83

convert () (errbot.rendering.Mde2mdConverter
method), 98

create () (errbot.backends.base.Room method), 67

create () (errbot.backends.hipchat. HipChatRoom
method), 70

create () (errbot.backends.irc.IRCRoom method), 76

create () (errbot.backends.telegram_messenger.TelegramRoom
method), 79

create () (errbot.backends.text. TextRoom method), 82

cnf_filter () (errbot.core_plugins.cnf_filter CommandNotFoundhileehod), 71

method), 88
collect_roots () (in module errbot.utils), 120
color (errbot.backends.base.Card attribute), 65
Command (class in errbot), 125
Command (class in errbot.botplugin), 108
CommandError, 108, 125
CommandNotFoundFilter (class in er-
rbot.core_plugins.cnf _filter), 88
configure () (errbot.backends.xmpp. XMPPRoom
method), 85
configure () (errbot.BotPlugin method), 123

configure () (errbot.botplugin.BotPlugin method),
104

connect () (errbot.backends.base.Backend method),
64

connect () (errbot.backends.irc.IRCBackend method),
73

connect () (errbot.backends.irc.IRCConnection
method), 74

connect () (errbot.backends.xmpp.XMPPConnection
method), 84

connect () (errbot.flow.FlowNode method), 114
connect () (errbot.flow.FlowRoot method), 114
connect () (errbot.FlowRoot method), 130

create () (errbot.backends.xmpp. XMPPRoom
method), 85

create_connection () (er-
rbot.backends.hipchat. HipchatBackend

create_connection () (er-

rbot.backends.xmpp.XMPPBackend method),

83
create_dynamic_plugin ()

rbot.botplugin. BotPluginBase method), 107
current_step (errbot.Flow attribute), 131
current_step (errbot.flow.Flow attribute), 113

D

deactivate () (errbot.BotFlow method), 130

deactivate () (errbot.BotPlugin method), 123

deactivate () (errbot.botplugin.BotPlugin method),
105

deactivate ()
method), 107

deactivate () (errbot.core_plugins.chatRoom.ChatRoom
method), 87

deactivate () (errbot.core_plugins.textcmds.TextModeCmds
method), 91

deactivate () (errbot.core_plugins.vcheck.VersionChecker
method), 92

deactivate () (errbot.core_plugins.webserver. Webserver
method), 93

deactivate () (errbot.flow.BotFlow method), 112

(er-

(errbot.botplugin. BotPluginBase

Index

155

Err Documentation, Release 6.1.1

deactivate_all_plugins () (er-
rbot.plugin_manager. BotPluginManager
method), 116

deactivate_flow () (er-
rbot.plugin_manager. BotPluginManager
method), 116

deactivate_plugin () (er-
rbot.plugin_manager.BotPluginManager
method), 116

debug () (in module errbot.cli), 109

del_event_handler () (er-

rbot.backends.xmpp.XMPPConnection
method), 84
delayed (errbot.backends.base.Message attribute), 66
deprecated (class in errbot.utils), 120
destroy () (errbot.backends.base.Room method), 67
destroy () (errbot.backends.hipchat. HipChatRoom
method), 70
destroy () (errbot.backends.irc.IRCRoom method), 76

destroy () (errbot.backends.telegram_messenger. TelegramRobiat

method), 79

destroy () (errbot.backends.text. TextRoom method),
82

destroy () (errbot.backends.xmpp. XMPPRoom
method), 85

destroy_dynamic_plugin ()
rbot.botplugin.BotPluginBase method), 107

(er-

disconnect () (errbot.backends.xmpp.XMPPConnectionerrbot

method), 84
disconnect_callback ()
rbot.backends.base.Backend method), 64
disconnect_callback () (errbot.core.ErrBot

(er-

method), 110

disconnected() (er-
rbot.backends.xmpp.XMPPBackend method),
83

dispatch_request () (er-
rbot.core_plugins.wsview.WebView method),

94
documentation (errbot.repo_manager.RepoEntry at-
tribute), 119

domain (errbot.backends.hipchat.HipChatRoom at-
tribute), 70

domain (errbot.backends.xmpp.XMPPldentifier at-
tribute), 84

E

echo () (errbot.core_plugins.utils. Utils method), 92
echo () (errbot.core_plugins.webserver. Webserver
method), 93

enable_format () (in module er-
rbot.rendering.ansiext), 97

end_fixed_width (er-
rbot.rendering.ansiext. CharacterTable at-

tribute), 96
end_headers ()
rbot.rendering.ansiext.BorderlessTable

(er-

method), 95

end_headers () (errbot.rendering.ansiext. Table
method), 97

end_inline_code (er-
rbot.rendering.ansiext. CharacterTable at-
tribute), 96

entry_name (errbot.repo_manager.RepoEntry at-
tribute), 119

enumerate_backend_plugins () (in module er-
rbot.backend_plugin_manager), 102

ErrBot (class in errbot.core), 109

errbot (module), 121

errbot .backend_plugin_manager (module),

102

.backends (module), 86

.backends .base (module), 63
.backends.hipchat (module), 70
.backends.irc (module), 72
.telegram_messenger (mod-

errbot
errbot

errbot
.backends
ule), 77
.backends.text (module), 80

.backends . xmpp (module), 83
.bootstrap (module), 102

.botplugin (module), 103

.cli (module), 109

.core (module), 109

.core_plugins (module), 94

.acls (module), 86
.backup (module), 87
.chatRoom (module), 87
.cnf_filter (module),

errbot

errbot
errbot
errbot
errbot

errbot
errbot
errbot
errbot

.core_plugins
.core_plugins
.core_plugins
.core_plugins
88
.core_plugins. flows (module), 89
.core_plugins.health (module), 89
.core_plugins.help (module), 90
.core_plugins.plugins (module), 90
textcmds (module), 91
.core_plugins.utils (module), 92
.core_plugins.vcheck (module), 92
.core_plugins.webserver (module), 93
.core_plugins.wsview (module), 94

. flow (module), 112

. logs (module), 115

.plugin_info (module), 115
.plugin_manager (module), 116
.plugin_wizard (module), 117
.rendering (module), 98
.rendering.ansiext (module), 94
.rendering.xhtmlim (module), 97
.repo_manager (module), 118

.storage (module), 101

errbot
errbot

errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot

.core_plugins.

errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot
errbot

156

Index

Err Documentation, Release 6.1.1

errbot.storage.base (module), 98

errbot.storage.memory (module), 99

errbot.storage.shelf (module), 100

errbot.streaming (module), 119

errbot.templating (module), 120

errbot .utils (module), 120

errbot .version (module), 121

error () (errbot.backends.base.Stream method), 69

execute () (errbot.flow.FlowExecutor method), 113

exists (errbot.backends.base.Room attribute), 68

exists (errbot.backends.hipchat.HipChatRoom
tribute), 70

exists (errbot.backends.irc.IRCRoom attribute), 76

at-

exists (errbot.backends.telegram_messenger.TelegramRoom

attribute), 79
exists (errbot.backends.text. TextRoom attribute), 82
exists (errbot.backends.xmpp. XMPPRoom attribute),
85

extendMarkdown () (er-
rbot.backends.hipchat. HipchatExtension
method), 72

extendMarkdown () (er-

rbot.rendering.ansiext. AnsiExtension method),
94
extras (errbot.backends.base.Message attribute), 66

F

fg_black (errbot.rendering.ansiext. CharacterTable at-
tribute), 96

fg_blue (errbot.rendering.ansiext.CharacterTable at-
tribute), 96

fg_cyan (errbot.rendering.ansiext.CharacterTable at-
tribute), 96

fg_default (errbot.rendering.ansiext.CharacterTable
attribute), 96

fg_green (errbot.rendering.ansiext.CharacterTable at-
tribute), 96

fg_magenta (errbot.rendering.ansiext.CharacterTable

attribute), 96

(errbot.rendering.ansiext. CharacterTable at-

tribute), 96

fg_white (errbot.rendering.ansiext. CharacterTable at-
tribute), 96

fg_yellow (errbot.rendering.ansiext.CharacterTable
attribute), 96

fields (errbot.backends.base.Card attribute), 65

fg_red

Flow (class in errbot.flow), 112

flow (errbot.backends.base.Message attribute), 66
FLOW_END (in module errbot.flow), 112
FlowExecutor (class in errbot.flow), 113

FlowNode (class in errbot.flow), 114

FlowRoot (class in errbot), 130

FlowRoot (class in errbot.flow), 114

Flows (class in errbot.core_plugins.flows), 89
flows_kill () (errbot.core_plugins.flows.Flows

method), 89

flows_list () (errbot.core_plugins.flows.Flows
method), 89

flows_show () (errbot.core_plugins.flows.Flows
method), 89

flows_start () (errbot.core_plugins.flows.Flows
method), 89

flows_status () (errbot.core_plugins.flows.Flows
method), 89

flows_stop () (errbot.core_plugins.flows.Flows
method), 89

format_logs () (in module errbot.logs), 115

format_timedelta () (in module errbot.utils), 120

formatted_plugin_1list () (er-
rbot.core_plugins.plugins. Plugins method),
90

frm (errbot.backends.base.Message attribute), 66

fullname (errbot.backends.base.Person attribute), 67

fullname (errbot.backends.irc.IRCPerson attribute),
75

fullname (errbot.backends.telegram_messenger.TelegramPerson

attribute), 79

fullname (errbot.backends.text. TextPerson attribute),
81

fullname (errbot.backends.xmpp.XMPPIdentifier at-
tribute), 84

fx_bold (errbot.rendering.ansiext.CharacterTable at-
tribute), 96

fx_italic (errbot.rendering.ansiext.CharacterTable
attribute), 96

fx_normal (errbot.rendering.ansiext.CharacterTable
attribute), 96

fx_not_italic (er-
rbot.rendering.ansiext.CharacterTable at-
tribute), 96

fx_not_underline (er-
rbot.rendering.ansiext. CharacterTable at-

filter () (errbot.backends.telegram_messenger. TelegramBotFilter tribute), 96

static method), 78
find_roots () (in module errbot.utils), 120

fx_reset (errbot.rendering.ansiext. CharacterTable at-
tribute), 96

first_name (errbot.backends.telegram_messenger. TelegréiPemefr 1 ine (errbot.rendering.ansiext.CharacterTable

attribute), 79
fixed_width (errbot.rendering.ansiext.Characterlable

attribute), 96

G

generate_certificate ()

attribute), 96

Flow (class in errbot), 130 (er-

Index 157

Err Documentation, Release 6.1.1

rbot.core_plugins.webserver. Webserver

method), 93
get () (errbot.storage.base.StorageBase method), 98
get () (errbot.storage.memory.MemoryStorage
method), 99

get () (errbot.storage.shelf.ShelfStorage method), 100
get_acl_usr () (in module errbot.core_plugins.acls),

86

get_all_active_plugin_names () (er-
rbot.plugin_manager. BotPluginManager
method), 116

get_all_active_plugins () (er-

rbot.plugin_manager. BotPluginManager
method), 116

get_all_plugin_names () (er-
rbot.plugin_manager. BotPluginManager
method), 116

get_all_repos_paths () (er-
rbot.repo_manager.BotRepoManager method),
118

get_blacklisted_plugin () (er-
rbot.plugin_manager. BotPluginManager
method), 116

get_command () (errbot.BotFlow method), 130

get_command () (errbot.flow.BotFlow method), 112

rbot.bootstrap), 102
git_clone () (in module errbot.utils), 120
git_pull () (in module errbot.utils), 120
git_tag_list () (in module errbot.utils), 120
glob () (in module errbot.core_plugins.acls), 86
global_restart () (in module errbot.utils), 120

H

Health (class in errbot.core_plugins.health), 89

Help (class in errbot.core_plugins.help), 90

help () (errbot.core_plugins.help.Help method), 90

hipchat_html () (in module er-
rbot.backends.hipchat), 72

HipchatBackend (class in errbot.backends.hipchat),

71
HipchatClient (class in errbot.backends.hipchat), 72
HipchatExtension (class in er-

rbot.backends.hipchat), 72
HipChatRoom (class in errbot.backends.hipchat), 70

HipChatRoomOccupant (class in er-
rbot.backends.hipchat), 71
HipchatTreeprocessor (class in er-

rbot.backends.hipchat), 72
history () (errbot.core_plugins.utils.Utils method), 92
host (errbot.backends.irc.IRCPerson attribute), 75

get_command_classes () (errbot.core.ErrBot human_name_for_git_url() (in module er-
method), 110 rbot.repo_manager), 119
get_config () (in module errbot.cli), 109
get_configuration_template () (er- |
rbot. BotPlugin method), 123 id (errbot.backends.telegram_messenger.Telegramldentifier
get_configuration_template () (er- attribute), 78
rbot.botplugin.BotPlugin method), 105 id (errbot.backends.telegram_messenger. TelegramPerson
get_configuration_template () (er- attribute), 79
rbot.core_plugins.webserver. Webserver id (errbot.backends.telegram_messenger.TelegramRoom
method), 93 attribute), 79
get_@o c () (errbot. core.ErrBot method), 110 Identifier (class in errbot.backends.base), 65
get_installed_plugin_repos () (er- jdentifier (errbot.backends.base.Presence at-
rbot.repo_manager.BotRepoManager method), tribute), 67
118 . identifier (errbot.backends.base.Stream attribute),
get_log_colors () (in module errbot.logs), 115 69
get_plugin() (errbot.botplugin. BotPluginBase image (errbot.backends.base.Card attribute), 65
me.thod), 107 imtext () (in module errbot.rendering), 98
get_plugin_class_from_method () (er- incoming_message () (er-
rbot.core.ErrBot static method), 110 rbot.backends.xmpp.XMPPBackend method),
get_plugin_configuration () (er- 83
rbot.plugin_manager. BotPluginManager TncompatiblePluginException, 117
me.thod), 1.16 index_update () (er-
get_plugin_obj by name() (er- rbot.repo_manager. BotRepoManager method),
rbot.plugin_manager.BotPluginManager 118
method), 116 init_storage () (errbot.botplugin. BotPluginBase
get_repo_from_index () (er- method), 107
rbot.repo_manager.BotRepoManager method), ;. iii3112 e_backend_storage () (er-
118) rbot.core.ErrBot method), 110
get_storage_plugin () (in module er-
158 Index

Err Documentation, Release 6.1.1

inject_command_filters_from/() (er-
rbot.core.ErrBot method), 110
inject_commands_from/() (errbot.core.ErrBot
method), 110
inject_flows_from()
method), 110
inline_code (errbot.rendering.ansiext. CharacterTable

attribute), 96

(errbot.core.ErrBot

join () (errbot.backends.telegram_messenger.TelegramRoom
method), 80

join () (errbot.backends.text. TextRoom method), 82

join () (errbot.backends.xmpp.XMPPRoom method),
85

joined (errbot.backends.base.Room attribute), 68

joined (errbot.backends.hipchat.HipChatRoom
tribute), 70

at-

inperson () (errbot.core_plugins.textcmds.TextModeCmdsoined (errbot.backends.irc.IRCRoom attribute), 76

method), 92

inroom () (errbot.core_plugins.textcmds.TextModeCmds
method), 92

install_packages () (in module er-
rbot.plugin_manager), 117

install_repo () (er-

rbot.repo_manager.BotRepoManager method),
118

InvalidState, 115

invite () (errbot.backends.base.Room method), 68

invite () (errbot.backends.hipchat. HipChatRoom
method), 70

invite () (errbot.backends.irc.IRCRoom method), 76

joined (errbot.backends.telegram_messenger.TelegramRoom
attribute), 80
joined (errbot.backends.text. TextRoom attribute), 82
joined (errbot.backends.xmpp. XMPPRoom attribute),
85

K

keys () (errbot.storage.base.StorageBase method), 98

keys () (errbot.storage.memory.MemoryStorage
method), 99

keys () (errbot.storage.shelf.ShelfStorage method), 100

keys () (errbot.storage.StoreMixin method), 101

invite () (errbot.backends.telegram_messenger. Telegramhoom

method), 79
invite () (errbot.backends.text. TextRoom method), 82
invite () (errbot.backends.xmpp. XMPPRoom
method), 85
irc_md () (in module errbot.backends.irc), 77
IRCBackend (class in errbot.backends.irc), 72
IRCConnection (class in errbot.backends.irc), 73
IRCPerson (class in errbot.backends.irc), 75
IRCRoom (class in errbot.backends.irc), 75
IRCRoomOccupant (class in errbot.backends.irc), 76
is_direct (errbot.backends.base.Message attribute),
66
is_from_self ()
method), 64
is_git_directory ()
rbot.core_plugins.help.Help method), 90
is_group (errbot.backends.base.Message attribute), 66

(errbot.backends.base.Backend

(er-

is_plugin_blacklisted() (er-
rbot.plugin_manager. BotPluginManager
method), 116

is_threaded (errbot.backends.base.Message at-

tribute), 66
ispydevd () (in module errbot.logs), 115

J

jid (errbot.backends.hipchat.HipChatRoom attribute),
70

join () (errbot.backends.base.Room method), 68

join () (errbot.backends.hipchat. HipChatRoom
method), 70

join () (errbot.backends.irc.IRCRoom method), 76

last_name (errbot.backends.telegram_messenger.TelegramPerson

attribute), 79

leave () (errbot.backends.base.Room method), 68

leave () (errbot.backends.hipchat. HipChatRoom
method), 70

leave () (errbot.backends.irc.IRCRoom method), 76

leave () (errbot.backends.telegram_messenger.TelegramRoom
method), 80

leave () (errbot.backends.text. TextRoom method), 82

leave () (errbot.backends.xmpp.XMPPRoom method),
85

len () (errbot.storage.base.StorageBase method), 99

len() (errbot.storage.memory.MemoryStorage
method), 99

len () (errbot.storage.shelf.ShelfStorage method), 100

link (errbot.backends.base.Card attribute), 65

load () (errbot.plugin_info.Plugininfo static method),
115

load_file () (errbot.plugin_info.Plugininfo static
method), 115
load_plugin () (er-

rbot.backend_plugin_manager. BackendPluginManager
method), 102
load_plugin_classes ()
rbot.plugin_info.Pluginlnfo method), 115
location (errbot.plugin_info.Plugininfo attribute),
115
log_tail () (errbot.core_plugins.utils.Utils method),
92

(er-

Index

159

Err Documentation, Release 6.1.1

M

main () (in module errbot.cli), 109

make_ssl_certificate () (in
rbot.core_plugins.webserver), 93

make_templates_path () (in module er-
rbot.templating), 120

makeEntry () (in module errbot.repo_manager), 119

md () (in module errbot.rendering), 98

md_escape () (in module errbot.rendering), 98

Mde2mdConverter (class in errbot.rendering), 98

MemoryStorage (class in errbot.storage.memory), 99

MemoryStoragePlugin (class in er-
rbot.storage.memory), 100

Message (class in errbot.backends.base), 65

message (errbot.backends.base.Presence attribute), 67

ml () (errbot.core_plugins.textcmds. TextModeCmds
method), 92

mode (errbot.backends.base.Backend attribute), 64

mode (errbot.backends.hipchat.HipchatBackend at-
tribute), 71

mode (errbot.backends.irc.IRCBackend attribute), 73

module er-

next_row () (errbot.rendering.ansiext. BorderlessTable
method), 95

next_row () (errbot.rendering.ansiext.Table method),
97

next_steps () (errbot.Flow method), 131

next_steps () (errbot.flow.Flow method), 113

nick (errbot.backends.base.Person attribute), 67

nick (errbot.backends.irc.IRCPerson attribute), 75

nick (errbot.backends.telegram_messenger.TelegramPerson
attribute), 79

nick (errbot.backends.text. TextPerson attribute), 82

nick (errbot.backends.xmpp. XMPPIdentifier attribute),
84

nick (errbot.backends.xmpp. XMPPRoomOccupant at-
tribute), 86

node (errbot.backends.hipchat. HipChatRoom attribute),
70

node (errbot.backends.xmpp. XMPPIdentifier attribute),
84

notify () (errbot.backends.hipchat. HipChatRoom
method), 70

mode (errbot.backends.telegram_messenger. TelegramBackeld © (class in errbot.rendering.ansiext), 96

attribute), 77

mode (errbot.backends.text. TextBackend attribute), 80

mode (errbot.backends.xmpp. XMPPBackend attribute),
83

mode (errbot.botplugin.BotPluginBase attribute), 107

MSG_ERROR_OCCURRED (er-
rbot.backends.base.Backend attribute), 63

MSG_ERROR_OCCURRED (errbot.core.ErrBot at-
tribute), 109

MSG_HELP_TATIL (errbot.core_plugins.help.Help at-
tribute), 90

MSG_HELP_UNDEFINED_COMMAND
rbot.core_plugins.help.Help attribute), 90

MSG_UNKNOWN_COMMAND (errbot.core.ErrBot at-
tribute), 110

mutable () (errbot.storage.StoreMixin method), 101

N

name (errbot.backends.base.Stream attribute), 69

name (errbot.backends.hipchat. HipChatRoom attribute),
70

name (errbot.BotFlow attribute), 130

name (errbot.botplugin. BotPluginBase attribute), 108

name (errbot.Flow attribute), 131

name (errbot.flow.BotFlow attribute), 112

name (errbot.flow.Flow attribute), 113

name (errbot.repo_manager.RepoEntry attribute), 119

module er-

(er-

new_plugin_wizard/() (in
rbot.plugin_wizard), 117

next_autosteps () (errbot.Flow method), 131

next_autosteps () (errbot.flow.Flow method), 113

O

occupants (errbot.backends.base.Room attribute), 68

occupants (errbot.backends.hipchat. HipChatRoom at-
tribute), 71

occupants (errbot.backends.irc. IRCRoom attribute),
76

occupants (errbot.backends.telegram_messenger. TelegramRoom
attribute), 80

occupants (errbot.backends.text. TextRoom attribute),
82

occupants (errbot.backends.xmpp. XMPPRoom
attribute), 85

on_currenttopic () (er-
rbot.backends.irc.IRCConnection method),
74

on_dcc_connect () (er-
rbot.backends.irc.IRCConnection method),
74

on_dcc_disconnect () (er-
rbot.backends.irc.IRCConnection method),
74

on_dccmsg () (errbot.backends.irc.IRCConnection
method), 74

on_disconnect () (er-
rbot.backends.irc.IRCConnection method),
74

on_endofnames () (er-
rbot.backends.irc.IRCConnection method),
74

on_join () (errbot.backends.irc.IRCConnection
method), 74

160

Index

Err Documentation, Release 6.1.1

on_kick () (errbot.backends.irc.IRCConnection
method), 74

on_notopic () (errbot.backends.irc.IRCConnection
method), 74

on_part () (errbot.backends.irc.IRCConnection
method), 74

on_privmsg () (errbot.backends.irc.IRCConnection
method), 75

on_privnotice () (er-
rbot.backends.irc.IRCConnection method),
75

on_pubmsg () (errbot.backends.irc.IRCConnection
method), 75

on_pubnotice () (er-
rbot.backends.irc.IRCConnection method),
75

on_topic() (errbot.backends.irc.IRCConnection
method), 75

on_welcome () (errbot.backends.irc.IRCConnection
method), 75

open () (errbot.storage.base.StoragePluginBase
method), 99

open () (errbot.storage.memory.MemoryStoragePlugin
method), 100

open () (errbot.storage.shelf.ShelfStoragePlugin

method), 101
open_storage ()
method), 101

(errbot.storage.StoreMixin

P

parent (errbot.backends.base.Message attribute), 66
parse () (errbot.plugin_info.Pluginlnfo static method),
115

parse_args ()
method), 103
parse_args () (errbot.botplugin.SeparatorArgParser
method), 109
parse_args ()
method), 109
partial (errbot.backends.base.Message attribute), 66
path (errbot.repo_manager.RepoEntry attribute), 119
Person (class in errbot.backends.base), 66
person (errbot.backends.base.Person attribute), 67
person (errbot.backends.irc.IRCPerson attribute), 75

(errbot.botplugin.ArgParserBase

(errbot.botplugin.ShlexArgParser

plugin_blacklist () (er-
rbot.core_plugins.plugins.Plugins method),
90

plugin_config() (er-
rbot.core_plugins.plugins. Plugins method),
91

plugin_deactivate () (er-
rbot.core_plugins.plugins. Plugins method),
91

plugin_info () (errbot.core_plugins.plugins.Plugins
method), 91

plugin_reload() (er-
rbot.core_plugins.plugins. Plugins method),
91

plugin_unblacklist () (er-
rbot.core_plugins.plugins. Plugins method),

91
PluginActivationException, 117
PluginConfigurationException, 117
PluginInfo (class in errbot.plugin_info), 115
PluginNotFoundException, 102
Plugins (class in errbot.core_plugins.plugins), 90

poller () (errbot.botplugin.BotPluginBase method),
108

populate_doc () (in module errbot.plugin_manager),
117

predicate_for_node () (errbot.flow.FlowNode
method), 114

prefix_groupchat_reply () (er-

rbot.backends.base.Backend method), 64

prefix_groupchat_reply () (er-
rbot.backends.hipchat. HipchatBackend
method), 71

prefix_groupchat_reply () (er-
rbot.backends.irc.IRCBackend method),
73

prefix_groupchat_reply () (er-

rbot.backends.telegram_messenger.TelegramBackend
method), 77

prefix_groupchat_reply () (er-
rbot.backends.text. TextBackend method),
80

prefix_groupchat_reply () (er-

rbot.backends.xmpp.XMPPBackend method),

person (errbot.backends.telegram_messenger. TelegramPerson 83

attribute), 79
person (errbot.backends.text. TextPerson attribute), 82
person (errbot.backends.xmpp. XMPPIdentifier — at-
tribute), 84

person (errbot.backends.xmpp. XMPPRoomOccupant
attribute), 86

plugin_activate () (er-
rbot.core_plugins.plugins. Plugins method),

90

prefix_groupchat_reply () (errbot.core.ErrBot
method), 110

Presence (class in errbot.backends.base), 67

process_message () (errbot.core.ErrBot method),

110

process_template () (errbot.core.ErrBot static
method), 111
program_next_poll () (er-

rbot.botplugin. BotPluginBase method), 108

Index

161

Err Documentation, Release 6.1.1

(errbot.repo_manager.RepoEntry attribute),
119

python

Q

query_room (errbot.backends.hipchat. HipchatBackend
attribute), 71

query_room()
method), 64

query_room()
method), 73

(errbot.backends.base.Backend

(errbot.backends.irc.IRCBackend

remove_plugins_from_path () (er-
rbot.plugin_manager.BotPluginManager
method), 117

remove_reaction () (er-
rbot.backends.text. TextBackend method),
81

render_plugin () (in module errbot.plugin_wizard),
117

render_test () (errbot.core_plugins.utils. Utils
method), 92

query_room () (errbot.backends.telegram_messenger. TelegpmBudkend () (in module errbot.streaming), 119

method), 77
query_room()
method), 81
query_room () (errbot.backends.xmpp.XMPPBackend
method), 83
query_room () (errbot.BotPlugin method), 123
query_room () (errbot.botplugin.BotPlugin method),
105

(errbot.backends.text. TextBackend

R

rate_limited () (in module errbot.utils), 120

re_botcmd () (in module errbot), 127

readline_support ()
rbot.backends.text. TextBackend
81

real_jid (errbot.backends.xmpp.XMPPRoomOccupant
attribute), 86

recurse () (in module errbot.rendering.ansiext), 97

recurse_check_structure () (in module er-
rbot.botplugin), 109

recurse_node () (errbot.core_plugins.flows.Flows
method), 89

reject () (errbot.backends.base.Stream method), 69

reload_plugin_by_name () (er-
rbot.plugin_manager. BotPluginManager
method), 116

remove () (errbot.storage.base.StorageBase method),
99

remove () (errbot.storage.memory.MemoryStorage
method), 100

remove () (errbot.storage.shelf.ShelfStorage method),
100

remove_command_filters_from()
rbot.core.ErrBot method), 111

remove_commands_from () (errbot.core.ErrBot
method), 111

remove_flows_from()
method), 111

remove_plugin ()
rbot.plugin_manager. BotPluginManager
method), 116

remove_plugin_templates_path () (in module
errbot.templating), 120

(er-
method),

(er-

(errbot.core.ErrBot

(er-

repo (errbot.repo_manager.RepoEntry attribute), 119

RepoEntry (class in errbot.repo_manager), 118

RepoException, 119

repos () (errbot.core_plugins.plugins.Plugins method),
91

repos_install () (er-
rbot.core_plugins.plugins.Plugins method),
91

repos_search () (er-
rbot.core_plugins.plugins. Plugins method),
91

repos_uninstall () (er-
rbot.core_plugins.plugins. Plugins method),
91

repos_update () (er-
rbot.core_plugins.plugins. Plugins method),
91

reset_app () (in module errbot.core_plugins.wsview),
94

reset_reconnection_count () (er-

rbot.backends.base. Backend method), 64
resource (errbot.backends.hipchat.HipChatRoom at-
tribute), 71
resource (errbot.backends.xmpp.XMPPldentifier at-
tribute), 84
restart ()
method), 89
restore_bot_from_backup ()
rbot.bootstrap), 102
Room (class in errbot.backends.base), 67
room (errbot.backends.base.RoomOccupant attribute),
68
room (errbot.backends.hipchat. HipChatRoom attribute),
71
room (errbot.backends.irc.IRCRoomQOccupant attribute),
76
room (errbot.backends.telegram_messenger.TelegramMUCOccupant
attribute), 79
room (errbot.backends.text. TextOccupant attribute), 81
room (errbot.backends.xmpp.XMPPRoomOccupant at-
tribute), 86
room_create ()
rbot.core_plugins.chatRoom.ChatRoom

(errbot.core_plugins.health.Health

(in module er-

(er-

162

Index

Err Documentation, Release 6.1.1

method), 87

room_destroy ()
rbot.core_plugins.chatRoom.ChatRoom
method), 87

(er-

room_factory (errbot.backends.hipchat.HipchatBackendse s r ch_repos ()

attribute), 71

room_factory (errbot.backends.xmpp.XMPPBackend
attribute), 83

room_invite ()
rbot.core_plugins.chatRoom.ChatRoom
method), 87

(er-

room_join () (errbot.core_plugins.chatRoom.ChatRoom

method), 88

room_leave () (errbot.core_plugins.chatRoom.ChatRoomend_card ()

method), 88

run_server () (errbot.core_plugins.webserver.Webserver
method), 93

S

(er-
rbot.repo_manager.BotRepoManager method),
118

send () (errbot.BotPlugin method), 123

send () (errbot.botplugin.BotPlugin method), 105

send () (errbot.core.ErrBot method), 111

send_card () (errbot.backends.hipchat. HipchatBackend
method), 72

send_card () (errbot.BotPlugin method), 123

(errbot.botplugin.BotPlugin method),

105

room_list () (errbot.core_plugins.chatRoom.ChatRoom send_card () (errbot.core.ErrBot method), 111

method), 88

room_occupants ()
rbot.core_plugins.chatRoom.ChatRoom
method), 88

(er-

room_topic () (errbot.core_plugins.chatRoom.ChatRoomend_message ()

method), 88

RoomDoesNotExistError, 68

RoomError, 68

RoomNotJoinedError, 68

RoomOccupant (class in errbot.backends.base), 68

roomoccupant_factory (er-
rbot.backends.hipchat. HipchatBackend at-
tribute), 71

roomoccupant_factory (er-
rbot.backends.xmpp.XMPPBackend attribute),

send_chunk () (errbot.backends.irc.IRCConnection
static method), 75

send_message () (errbot.backends.base.Backend
method), 64

(errbot.backends.irc.IRCBackend
method), 73

send_message () (er-
rbot.backends.telegram_messenger. TelegramBackend
method), 77

send_message ()
method), 81

send_message () (er-
rbot.backends.xmpp.XMPPBackend method),
84

send_message () (errbot.core.ErrBot method), 111

(errbot.backends.text. TextBackend

83 send_private_message () (er-
rooms (errbot.backends.base.Backend attribute), 64 rbot.backends.irc.IRCConnection method),
rooms (errbot.backends.text. TextBackend attribute), 81 75
rooms () (errbot.backends.hipchat.HipchatBackend o end_public_message () (er-

method), 72 rbot.backends.irc.IRCConnection method),
rooms () (errbot.backends.irc.IRCBackend method), 73 75
rooms () (errbot.backends.telegram_messenger. TelegramBgekgad simple_reply () (errbot.core.ErrBot

method), 77 method), 111
rooms () (errbot.backends.xmpp. XMPPBackend send_stream_request () (er-

method), 83 rbot.backends.hipchat. HipchatBackend
rooms () (errbot.BotPlugin method), 123 method), 72
rooms () (errbot.botplugin.BotPlugin method), 105 send_stream_request () (er-
RoomsNot SupportedError, 77 rbot.backends.irc.IRCBackend method),
root (errbot.Flow attribute), 131 73
root (errbot.flow.Flow attribute), 113 send_stream_request () (er-
route () (in module errbot.core_plugins.wsview), 94 rbot.backends.irc.IRCConnection method),
run () (errbot.backends.hipchat.HipchatTreeprocessor 75

method), 72 send_stream_request () (er-
run () (errbot.rendering.ansiext.AnsiPostprocessor rbot.backends.telegram_messenger.TelegramBackend

method), 94 method), 77
run () (errbot.rendering.ansiext. AnsiPreprocessor send_stream_request () (errbot.BotPlugin

method), 95 method), 124
run () (errbot.streaming.Tee method), 119
Index 163

Err Documentation, Release 6.1.1

send_stream_request () (er-
rbot.botplugin. BotPlugin method), 106
send_templated () (errbot.BotPlugin method), 124
send_templated() (errbot.botplugin. BotPlugin
method), 106
send_templated()
111
SeparatorArgParser (class in errbot.botplugin),
109
serve_forever ()
method), 64
serve_forever ()
method), 73
serve_forever () (errbot.backends.text TextBackend
method), 81
serve_forever () (er-
rbot.backends.xmpp.XMPPBackend method),
84
serve_forever ()
rbot.backends.xmpp.XMPPConnection
method), 84
serve_once ()
method), 64

(errbot.core.ErrBot method),

(errbot.backends.base.Backend

(errbot.backends.irc.IRCBackend

(er-

(errbot.backends.base.Backend

size (errbot.backends.base.Stream attribute), 69
split_and_send_message () (errbot.core.ErrBot
method), 112
split_identifier () (in
rbot.backends.xmpp), 86
split_string_after () (in module errbot.utils),
121
start () (errbot.streaming.Tee method), 119
start_flow () (errbot.flow.FlowExecutor method),
113
start_poller () (errbot.BotPlugin method), 124
start_poller () (errbot.botplugin. BotPlugin
method), 106
start_poller ()
method), 108
startup_time (errbot.core.ErrBot attribute), 112
status (errbot.backends.base.Presence attribute), 67
status (errbot.backends.base.Stream attribute), 69
status () (errbot.core_plugins.health.Health method),
90
status_gc ()
method), 90
status_load ()

module er-

(errbot.botplugin. BotPluginBase

(errbot.core_plugins.health.Health

(errbot.core_plugins.health.Health

serve_once () (errbot.backends.telegram_messenger.TelegramBackeetdiod), 90

method), 78

session_start ()
rbot.backends.xmpp.XMPPConnection
method), 84

set () (errbot.storage.base.StorageBase method), 99

set () (errbot.storage.memory.MemoryStorage
method), 100

set () (errbot.storage.shelf.ShelfStorage method), 100

(er-

set_plugin_configuration () (er-
rbot.plugin_manager. BotPluginManager
method), 117

set_plugin_repos () (er-

rbot.repo_manager.BotRepoManager method),
118
setup_bot () (in module errbot.bootstrap), 102
ShelfStorage (class in errbot.storage.shelf), 100
ShelfStoragePlugin (class in
rbot.storage.shelf), 101
ShlexArgParser (class in errbot.botplugin), 109
shutdown () (errbot.backends.irc.IRCBackend
method), 73
shutdown () (errbot.core.ErrBot method), 112
shutdown () (errbot.core_plugins.health.Health
method), 89

er-

(er-
method),

status_plugins ()
rbot.core_plugins.health.Health
90

stop_flow () (errbot.flow.FlowExecutor method), 113

stop_poller () (errbot.BotPlugin method), 125

stop_poller () (errbot.botplugin.BotPlugin method),
106

stop_poller ()
method), 108

StorageBase (class in errbot.storage.base), 98

StoragePluginBase (class in errbot.storage.base),
99

StoreAlreadyOpenError, 101

StoreException, 101

StoreMixin (class in errbot.storage), 101

StoreNotOpenError, 101

Stream (class in errbot.backends.base), 69

stream_type (errbot.backends.base.Stream attribute),
69

strip_path () (in module
rbot.core_plugins.wsview), 94

success () (errbot.backends.base.Stream method), 69

summary (errbot.backends.base.Card attribute), 65

(errbot.botplugin. BotPluginBase

er-

shutdown () (errbot.plugin_manager.BotPluginManager T

method), 117
shutdown () (errbot.repo_manager.BotRepoManager
method), 118
signal_connect_to_all_plugins()
rbot.core.ErrBot method), 112

(er-

Table (class in errbot.rendering.ansiext), 97
tail () (in module errbot.core_plugins.utils), 92
Tee (class in errbot.streaming), 119
TelegramBackend (class in
rbot.backends.telegram_messenger), 77

er-

164

Index

Err Documentation, Release 6.1.1

TelegramBotFilter (class in er-
rbot.backends.telegram_messenger), 78
TelegramIdentifier (class in er-
rbot.backends.telegram_messenger), 78
TelegramMUCOccupant (class in er-
rbot.backends.telegram_messenger), 78
TelegramPerson (class in er-
rbot.backends.telegram_messenger), 79
TelegramRoom (class in er-

rbot.backends.telegram_messenger), 79
tenv () (in module errbot.templating), 120
text () (in module errbot.rendering), 98
text_color (errbot.backends.base.Card attribute), 65
TextBackend (class in errbot.backends.text), 80
TextModeCmds (class in
rbot.core_plugins.textcmds), 91
TextOccupant (class in errbot.backends.text), 81
TextPerson (class in errbot.backends.text), 81
TextRoom (class in errbot.backends.text), 82
thumbnail (errbot.backends.base.Card attribute), 65
title (errbot.backends.base.Card attribute), 65

er-

title (errbot.backends.telegram_messenger.TelegramRoom
username (errbot.backends.telegram_messenger.TelegramPerson

attribute), 80
to (errbot.backends.base.Message attribute), 66
tokenizedsonEntry () (in module
rbot.repo_manager), 119
topic (errbot.backends.base.Room attribute), 68
topic (errbot.backends.hipchat. HipChatRoom at-
tribute), 71
topic (errbot.backends.irc.IRCRoom attribute), 76

er-

118

update_plugin_places () (er-
rbot.plugin_manager.BotPluginManager
method), 117

update_repos () (er-

rbot.repo_manager.BotRepoManager method),
118

uptime () (errbot.core_plugins.health.Health method),
90

user (errbot.backends.irc.IRCPerson attribute), 75

user_changed_status () (er-
rbot.backends.xmpp. XMPPBackend method),
84

user_joined_chat () (er-
rbot.backends.xmpp.XMPPBackend method),
84

user_left_chat () (er-
rbot.backends.xmpp.XMPPBackend method),
84

UserDoesNotExistError, 69

username (errbot.backends.telegram_messenger.TelegramMUCOccupant

attribute), 79

attribute), 79
(errbot.backends.hipchat.HipchatClient at-

tribute), 72

Utils (class in errbot.core_plugins.utils), 92

Vv

ValidationException, 109

users

topic (errbot.backends.telegram_messenger.TelegramRooRje rsion2tuple () (in module errbot.utils), 121

attribute), 80
topic (errbot.backends.text. TextRoom attribute), 82
topic (errbot.backends.xmpp.XMPPRoom attribute),
85
transfered (errbot.backends.base.Stream attribute),
69
translate () (in module errbot.rendering.ansiext), 97
trigger () (errbot.flow.FlowExecutor method), 114

try_decode_json () (in module er-
rbot.core_plugins.wsview), 94
unblacklist_plugin () (er-

rbot.plugin_manager. BotPluginManager
method), 117
unescape () (in module errbot.rendering. xhtmlim), 97
uninstall_repo () (er-
rbot.repo_manager.BotRepoManager method),
118
unknown_command ()
112
update_all_repos() (er-
rbot.repo_manager.BotRepoManager method),

(errbot.core.ErrBot method),

version_check () (er-
rbot.core_plugins.vcheck. VersionChecker
method), 92

VersionChecker (class in er-

rbot.core_plugins.vcheck), 92

W

warn_admins () (errbot.BotPlugin method), 125

warn_admins () (errbot.botplugin.BotPlugin method),
107

warn_admins () (errbot.core.ErrBot method), 112

webhook () (in module errbot), 126

webhook_test ()
rbot.core_plugins.webserver. Webserver
method), 93

webroute () (in module errbot), 126

Webserver (class in errbot.core_plugins.webserver),
93

webstatus () (errbot.core_plugins.webserver.Webserver
method), 93

WebView (class in errbot.core_plugins.wsview), 94

which () (in module errbot.repo_manager), 119

whoami () (errbot.core_plugins.utils. Utils method), 92

(er-

Index

165

Err Documentation, Release 6.1.1

write () (errbot.rendering.ansiext. BorderlessTable
method), 95
write () (errbot.rendering.ansiext.Table method), 97

X

xhtml () (in module errbot.rendering), 98
XMPPBackend (class in errbot.backends.xmpp), 83
XMPPConnection (class in errbot.backends.xmpp), 84
XMPPIdentifier (class in errbot.backends.xmpp), 84
XMPPPerson (class in errbot.backends.xmpp), 84
XMPPRoom (class in errbot.backends.xmpp), 85
XMPPRoomOccupant (class in errbot.backends.xmpp),
85

166

Index

	Screenshots
	Simple to build upon
	Batteries included
	Multiple server backends
	Core features
	Built-in administration and security
	Extensive plugin framework

	Sharing
	Community
	User guide
	Setup
	Administration
	Plugin development
	Flow development
	[Advanced] Backend development
	[Advanced] Storage Plugin development
	Logging to Sentry

	Getting involved
	Contributing
	Issues and feature requests
	Getting help

	API documentation
	errbot package

	Release history
	v6.1.1 (2019-06-22)
	v6.1.0 (2019-06-16)
	v6.0.0 (2019-03-23)
	v6.0.0-alpha (2018-06-10)
	v5.2.0 (2018-04-04)
	v5.1.3 (2017-10-15)
	v5.1.2 (2017-08-26)
	v5.1.1 (2017-08-12)
	v5.1.0 (2017-07-24)
	v5.0.1 (2017-05-08)
	v5.0.0 (2017-04-23)
	v4.3.7 (2017-02-08)
	v4.3.6 (2017-01-28)
	v4.3.5 (2016-12-21)
	v4.3.4 (2016-10-05)
	v4.3.3 (2016-09-09)
	v4.3.2 (2016-09-04)
	v4.3.1 (2016-09-03)
	v4.3.0 (2016-08-10)
	v4.2.2 (2016-06-24)
	v4.2.1 (2016-06-10)
	v4.2.0 (2016-06-10)
	v4.1.3 (2016-05-10)
	v4.1.2 (2016-05-10)
	v4.1.1 (2016-05-09)
	v4.1.0 (2016-05-09)
	v4.0.3 (2016-03-17)
	v4.0.2 (2016-03-15)
	v4.0.1 (2016-03-14)
	v4.0.0 (2016-03-13)

	License
	Python Module Index
	Index

